Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)
Bài 2:
Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)
Mà theo BĐT AM-GM và Bunhiacopxky:
\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)
\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)
Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)
Bài 1:
\(\Leftrightarrow-cosa-cosa+sina+cosa=0\Leftrightarrow sina=cosa\)
\(\Rightarrow a=\frac{\pi}{4}+k\pi\Rightarrow a\) thuộc cung thứ nhất và thứ 3
Bài 2:
Ta có \(\frac{5\pi}{3}-\left(-\frac{\pi}{3}\right)=\frac{6\pi}{3}=2\pi\Rightarrow\) góc \(\frac{5\pi}{3}\) và \(-\frac{\pi}{3}\) cùng cung biểu diễn
\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)
\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)
\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm
Đẳng thức xảy ra khi \(a=b=c\)
b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Cách làm tương tự câu a.
c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)
d) Em làm biếng quá anh làm nốt đi:P
Solution:
Dạng tổng quát :
\(\sqrt{1+k^2+\frac{k^2}{\left(k-1\right)^2}}=\sqrt{\frac{\left(1+k^2\right)\left(k+1\right)^2+k^2}{\left(k-1\right)^2}}\)
\(=\sqrt{\frac{k^4-2k^3+3k^2-2k+1}{\left(k-1\right)^2}}=\sqrt{\frac{\left(k^2-k\right)^2+2\left(k^2-k\right)+1}{\left(k-1\right)^2}}\)
\(=\sqrt{\frac{\left(k^2-k+1\right)^2}{\left(k-1\right)^2}}=\frac{k^2-k+1}{k-1}\)
\(=\frac{k\left(k-1\right)+1}{k-1}=k+\frac{1}{k-1}\)
Áp dụng ta có :
\(S=\sqrt{1+2020^2+\frac{2020^2}{2019^2}}-\frac{2020}{2019}\)
\(S=2020+\frac{1}{2019}-\frac{2020}{2019}\)
\(S=2020+\frac{-2019}{2019}\)
\(S=2020-1\)
\(S=2019\)
Vậy...
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
\(\Leftrightarrow\frac{\left(2-b\right)\left(2-c\right)+\left(2-c\right)\left(2-a\right)+\left(2-a\right)\left(2-b\right)}{\left(2-a\right)\left(2-b\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{4-2b-2c+bc+4-2c-2a+ca+4-2a-2b+ab}{\left(4-2a-2b+ab\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{12-4\left(a+b+c\right)+\left(ab+bc+ca\right)}{8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc}\ge3\)
\(\Leftrightarrow12-4\left(a+b+c\right)+\left(ab+bc+ca\right)\ge\) \(24-12\left(a+b+c\right)+6\left(ab+bc+ca\right)-3abc\)
\(\Leftrightarrow8\left(a+b+c\right)+3abc\ge12+5\left(ab+bc+ca\right)\)
Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\)thì giả thiết trở thành \(p^2-2q=3\)hay \(4q-p^2=2q-3\)
và ta cần chứng minh \(8p+3r\ge12+5q\)
Theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\)hay \(3r\ge\frac{p\left(4q-p^2\right)}{3}=\frac{p\left(2q-3\right)}{3}\)(*)
Có \(p^2-2q=3\Rightarrow q=\frac{p^2-3}{2}\)(**)
Sử dụng hai điều kiện (*) và (**) ta đưa điều phải chứng minh về dạng \(8p+\frac{p\left(p^2-6\right)}{3}\ge12+\frac{5\left(p^2-3\right)}{2}\)
\(\Leftrightarrow\left(2p-3\right)\left(p-3\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi a = b = c = 1