Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = { 40; 41; 42; ..........; 100 }
Số phần tử của tập hợp A là :
( 100 - 40 ) : 1 + 1 = 61 phần tử
b) B = { 10; 12; 14; ..........; 98 }
Số phần tử của tập hợp B là :
( 98 - 10 ) : 2 + 1 = 45 phần tử
c) C = { 35; 37; 39; .........; 105 }
Số phần tử của tập hợp C là :
( 105 - 35 ) : 2 + 1 = 36 phần tử
a) (x - 2)(x + 3) < 0 (1)
Do x là số nguyên nên x - 2 < x + 3
(1) x - 2 < 0 và x + 3 > 0
*) x - 2 < 0
x < 0 + 2
x < 2
*) x + 3 > 0
x > 0 - 3
x > -3
Vậy -3 < x < 2
a, cn = 1
= 1n
= 1
vậy n = 1
b ) cn = 0
= 0n
= 0
k m nha
Ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{c+d+a}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\)\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}>\frac{a+b+c+d}{a+b+c+d}=1\) ( cộng theo vế 4 đẳng thức trên )
\(\Rightarrow\)\(M>1\) \(\left(1\right)\)
Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,m\inℕ^∗\right)\) )
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d}\)
\(\frac{d}{c+d+a}< \frac{d+b}{a+b+c+d}\)
\(\Rightarrow\)\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\) ( cộng theo vế 4 đẳng thức trên )
\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)
Từ (1) và (2) suy ra đpcm : \(1< M< 2\)
Vậy \(1< M< 2\)
Chúc bạn học tốt ~
a) Gọi d∈ƯC(2n+1; 4n+3)
⇒2n+1⋮d và 4n+3⋮d
Áp dụng tính chất chia hết của một hiệu, ta được
2n+1-(4n+3)⋮d
hay 2n+1-4n-3⋮d
⇔-2n-2⋮d
hay -2(n-1)⋮d
⇔d∈Ư(-2)
hay d∈{1;2;-2;-1}(1)
Ta có: 2n+1; 4n+3 là số lẻ
nên 2n+1\(⋮̸\pm2\)và 4n+3\(⋮̸\pm2\)
Do đó: d=1
hay ƯC(2n+1; 4n+3)=1
Do đó: \(A=\frac{2n+1}{4n+3}\) là phân số tối giản ∀n
b) Gọi e∈ƯC(4n+1; 12n+7)
⇒4n+1⋮e và 12n+7⋮e
⇒4n+1+12n+7⋮e
hay 16n+8⋮e
⇔8(2n+1)⋮e
⇔e∈Ư(8)
⇔e∈{1;-1;2;-2;4;-4;8;-8}
Ta có: 4n+1 và 12n+7 là các số lẻ
⇔4n+1\(⋮̸\)2 và 12n+7\(⋮̸\)2
⇔4n+1\(⋮̸\)4 và 12n+7\(⋮̸\)4
⇔4n+1\(⋮̸\)8 và 12n+7\(⋮̸\)8
⇔e=1
hay ƯC(4n+1; 12n+7)=1
Do đó: \(\frac{4n+1}{12n+7}\) là phân số tối giản ∀n
c) Gọi f là ƯC(7n+4; 9n+5)
⇔7n+4⋮f và 9n+5⋮f
⇔9(7n+4)⋮f và 7(9n+5)⋮f
⇔63n+36⋮f và 63n+35⋮f
⇔63n+36-63n-35⋮f
hay 1⋮f
⇔f∈Ư(1)
hay f=1
⇔ƯC(7n+4;9n+5)=1
⇔\(\frac{7n+4}{9n+5}\) là phân số tối giản ∀n
Theo đề bài ta có:
a + b = -8
b + c = -6
c + a = 16
\(\Rightarrow\)(a + b) + (b + c) + (c + a) = (-8) + (-6) + 16 = 2
Mà (a + b) + (b + c) + (c + a) = a + b + b + c + c + a = 2a + 2b + 2c =2(a+b+c)
\(\Rightarrow a+b+c=2\div2=1\)
\(\Rightarrow a=\left(a+b+c\right)-\left(b+c\right)=1-\left(-6\right)=7\)
\(\Rightarrow b=\left(a+b+c\right)-\left(c+a\right)=1-16=-15\)
\(\Rightarrow c=\left(a+b+c\right)-\left(a+b\right)=1-\left(-8\right)=9\)
Vậy a = 7; b = -15; c = 9
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)