Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề viết mệt quá nên thay \(\sqrt{a}=a;\sqrt{b}=b;\sqrt{c}=c\) viết lại đề tiện thể sửa đề luôn.
\(a^2+b^2=\left(a+b-c\right)^2\)
Chứng minh:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Ta có: \(a^2+b^2=\left(a+b-c\right)^2\)
\(\Leftrightarrow c^2-2ac-2bc+2ab=0\)
\(\Leftrightarrow a=\frac{c^2-2bc}{2c-2b}\)
Thế vô bài toán ta được
\(VT=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(c^2\right)^2}{b^2+\left(b-c\right)^2}=\frac{2c^2\left(2b^2+c^2-2bc\right)}{\left(2b^2+c^2-2bc\right)4\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
Ta lại có:
\(VP=\frac{\frac{c^2-2bc}{2c-2b}-c}{b-c}=\frac{-c^2}{-2\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
\(\Rightarrow\)ĐOCM
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
Biết đâu làm đó , sai thôi đừngg chửi nhé
1, Rút gọn
a) A = \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\) = \(\dfrac{\left(\sqrt{x}\right)^2+\sqrt{xy}}{\left(\sqrt{y}\right)^2+\sqrt{xy}}\) = \(\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{y}+\sqrt{x}\right)}\) = \(\dfrac{\sqrt{x}}{\sqrt{y}}\)
b) B = \(\sqrt{\dfrac{\left(a-b\right)^3.b^3}{c}}\) . \(\sqrt{\dfrac{bc^3}{\left(a-b\right)}}\)
= \(\sqrt{\dfrac{\left(a-b\right)^3.b^3}{c}.\dfrac{bc^3}{\left(a-b\right)}}\) = \(\sqrt{\left(a-b\right)^2.b^4.c^2}\)
= \(\left|a-b\right|\) . \(\left|b^2\right|\) . \(\left|c\right|\)
= -(a -b) .b2. c
bài 2:
a/ \(\sqrt{x^2-4}-\sqrt{x-2}=0\) đk: x≥2
<=> \(\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
<=>\(\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
vậy pt có 1 nghiệm x = 2
b/ \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)
Ta có: \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=\sqrt{3\left(x^2+4x+4\right)+4}+\sqrt{\left(y^2-4y+4\right)+9}=\sqrt{3\left(x+2\right)^2+4}+\sqrt{\left(y-2\right)^2+9}\ge\sqrt{4}+\sqrt{9}=2+3=5\)
=> Dấu ''='' xảy ra khi x = -2; y = 2
Vậy pt có nghiệm x=-2; y = 2
Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/633314.html
Lời giải:
Đặt \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\). Bài toán trở thành
Cho $x,y,z$ dương thỏa mãn \(y^2\neq z^2; x+y\neq z; x^2+y^2=(x+y-z)^2\)
CMR: \(\frac{x^2+(x-z)^2}{y^2+(y-z)^2}=\frac{x-z}{y-z}\)
--------------------------------------------------
Ta có:
\(x^2+y^2=(x+y-z)^2=[y+(x-z)]^2\)
\(\Leftrightarrow x^2+y^2=y^2+(x-z)^2+2y(x-z)\)
\(\Leftrightarrow x^2=(x-z)^2+2y(x-z)\)
\(\Leftrightarrow x^2+(x-z)^2=2(x-z)^2+2y(x-z)=2(x-z)(x-z+y)\)
Tương tự:
\(y^2+(y-z)^2=2(y-z)^2+2x(y-z)=2(y-z)(y-z+x)\)
Do đó: \(\frac{x^2+(x-z)^2}{y^2+(y-z)^2}=\frac{2(x-z)(x-z+y)}{2(y-z)(y-z+x)}=\frac{x-z}{y-z}\)
Ta có đpcm.
a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)
\(\Leftrightarrow2n+1=1\left(2n+1\right)\)
\(\Leftrightarrow2n+1=2n+1\)
\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Câu b) ý 2:
Áp dụng BĐT cô si ta có :
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)