Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
áp dụng bất đẳng thức: 1+b2>=2b. tương tự.....
ad bđt cauchy: a/b+b/c+c/a>=3∛a/b.b/c.c/a=3
P>=\(\dfrac{2ab}{bc}\)+\(\dfrac{2bc}{ca}\)+\(\dfrac{2ca}{ab}\) =2(\(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)+ \(\dfrac{c}{a}\))>=2.3=6
Pmin khi a=b=c=1
Áp dụng bđt : \(1+b^2>=2b\)
bđt cauchy : \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>3\sqrt[3]{}\) a\b . b\c . c\a = 3
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)
Ta có:
\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)
BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)
Đánh giá cuối cùng đúng theo BĐT Cauchy
Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Bài này mẫu số là \(\left(a+b+c\right)^3\) thì đúng hơn, mũ 2 cách làm vẫn y hệt nhưng cho 1 kết quả rất xấu
\(A\ge3\left(a^2+b^2+c^2\right)+\dfrac{24\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(=3\left(a+b+c\right)^2+\dfrac{192}{a+b+c}-48\)
\(=\dfrac{\sqrt{6}}{3}\left(a+b+c\right)^2+\dfrac{96}{a+b+c}+\dfrac{96}{a+b+c}+\left(3-\dfrac{\sqrt{6}}{3}\right)\left(a+b+c\right)^2-48\)
\(\ge3\sqrt[3]{\dfrac{96^2.\sqrt{6}}{3}}+\left(3-\dfrac{\sqrt{6}}{3}\right).3\left(ab+bc+ca\right)-48=...\)
\(BDT\Leftrightarrow\sum\left[\dfrac{\left(a+b\right)^2}{c^2+ab}-2\right]\ge0\)\(\Leftrightarrow\sum\dfrac{a^2+b^2-2c^2}{c^2+ab}\ge0\)(*)
\(\Leftrightarrow\sum\left(\dfrac{a^2-c^2}{c^2+ab}+\dfrac{b^2-c^2}{c^2+ab}\right)\ge0\)
\(\Leftrightarrow\sum\left(c^2-a^2\right)\left(\dfrac{1}{a^2+bc}-\dfrac{1}{c^2+ab}\right)\ge0\)
\(\Leftrightarrow\sum\left(c-a\right)^2.\dfrac{\left(c+a\right)\left(c+a-b\right)}{\left(a^2+bc\right)\left(c^2+ab\right)}\ge0\)
\(\dfrac{\left(a+b\right)^2}{c^2+ab}+\dfrac{\left(b+c\right)^2}{a^2+bc}+\dfrac{\left(c+a\right)^2}{b^2+ca}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)\(=\dfrac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\) (theo AM-GM với a ; b>0)
\(=\dfrac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2+ab+bc+ca}=\dfrac{4.3.\left(a^2+b^2+c^2\right)}{2.\left(a^2+b^2+c^2\right)}\)(do \(a^2+b^2+c^2\ge ab+bc+ca\))
\(=4.1,5\) = 6 ( do a;b;c>0)