K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

\(ab+ba\)

\(=ab.ab\)

\(=2ab\)

Vì a.b>0

\(\Rightarrow ab\ge1\Rightarrow2ab\ge2\)

Vậy..............

k mk nha

12 tháng 4 2018

Cho a = 0,1, b = 0,2 thì ab + ba = 0,02 + 0,02 = 0,04 < 2

ĐỀ SAI

22 tháng 6 2021

Để \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

<=> \(\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)

<=> \(\dfrac{a^2-2ab+b^2}{ab}\ge0\)

<=> \(\dfrac{\left(a-b\right)^2}{ab}\ge0\)

Mà \(\left(a-b\right)^2\ge0\)

\(\dfrac{a}{b}>0\) <=> ab > 0

=> đpcm

Dấu "=" xảy ra <=> a = b

26 tháng 4 2017

Gọi b = a + k (k \(\in\) Z, k \(\ne\) -a)

\(\dfrac{a}{b}>0\)

Ta có:

\(\dfrac{a}{a+k}+\dfrac{a+k}{a}\\ =\dfrac{a^2}{a\cdot\left(a+k\right)}+\dfrac{\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a^2+2ak+k^2\right)}{a^2+ak}\\ =\dfrac{a^2+a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =\dfrac{2\cdot\left(a^2+ak\right)}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =2+\dfrac{k^2}{a^2+ak}>2\)

Vậy \(\dfrac{a}{a+k}+\dfrac{a+k}{a}>2\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}>2\left(đpcm\right)\)

27 tháng 4 2017

Sai! CMR: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) mà?

Vào đây đi:

dfrac{a}{b}+\dfrac{b}{a - Hoc24

12 tháng 7 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM

23 tháng 2 2020

CMR : a2 lớn hơn hoặc bằng 0

Nếu a là 0 thì a2 = 0

Nếu a ∈ N* thì a2 > 0

☛ Vậy a ∈ N thì a2 ≥ 0

CMR : -a2 bé hơn hoặc bằng 0

Nếu a là 0 thì -a2 = 0

Nếu a ∈ N* thì -a2 < 0

☛ Vậy a ∈ N thì -a2 ≤ 0

*Trường hợp 1: a≠0

Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)

Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)

*Trường hợp 2: a=0

Ta có: \(a^2=0^2=0\)

Do đó, \(a^2=0\forall a=0\)(2)

Từ (1) và (2) suy ra \(a^2\ge0\forall a\)

\(-a^2\le0\forall a\)

1 tháng 6 2017

Không mất tính tổng quát, giả sử a \(\ge\)

\(\Rightarrow\) a = b + m ( m \(\ge\)0 )

Ta có :  \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Dấu " = " chỉ xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\)a = b 

1 tháng 6 2017

Ta có: \(\frac{a}{b}>0\Rightarrow\) a và b cùng dấu \(\Rightarrow\frac{b}{a}>0\)

Áp dụng bất đẳng thức cô si ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Dấu bằng xẩy ra khi và chỉ khi \(\frac{a}{b}=\frac{b}{a}\Leftrightarrow a^2=b^2\Leftrightarrow a=b\)

a^2 + b^2 >= ab 
<=> a^2 + b^2 -ab >= 0 
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0 
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0 
{a - (1/2)b}^2 luôn >= 0 
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0

Bài toán của bạn đưa về giải bất đẳng thức 
a^2 + b^2 >= ab 
<=> a^2 + b^2 -ab >= 0 
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0 
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0 
{a - (1/2)b}^2 luôn >= 0 
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0 
* Lưu ý: ab = 2.(1/2).ab 
b^2 = (1/4).b^2 + (3/4).b^2