K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 ) 

Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy maxP = 1/81 <=> a = b = c = 1/3

16 tháng 6 2016

a,b,c >0 thì:

\(a+b\ge2\sqrt{ab}\Rightarrow\frac{\sqrt{ab}}{a+b}\le\frac{1}{2}.\)

\(b+c\ge2\sqrt{bc}\Rightarrow\frac{\sqrt{bc}}{b+c}\le\frac{1}{2}.\)

\(c+a\ge2\sqrt{ac}\Rightarrow\frac{\sqrt{ac}}{c+a}\le\frac{1}{2}.\)

Nhân từng vế của 3 BĐT trên ta có:

\(\frac{\sqrt{ab}\sqrt{bc}\sqrt{ca}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=B\le\frac{1}{8}\)

Vậy GTLN của B = 1/8 khi a=b=c.

7 tháng 12 2020

câu a dùng biến đổi tương đương là được

19 tháng 7 2016

a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)

=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)

Dấu "=" xảy ra khi: a=b

Vậy GTNN của N là 9/2 tại a=b

b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)

<=>(a+b)2-2ab\(\ge\frac{9}{2}\)

<=>\(9-2ab\ge\frac{9}{2}\)

<=>\(2ab\le\frac{9}{2}\)

<=>\(ab\ge\frac{9}{4}\)

<=>\(ab+2\le\frac{17}{4}\)

Dấu "=" xảy ra khi a=b

Vậy GTLN của P là 17/4 tại a=b

19 tháng 2 2019

Theo bất đẳng thức Cô-si ta có : \(a+b\ge2\sqrt{ab}\)

<=> \(\sqrt{ab}\le8\) <=> \(ab\le64\)

=> \(P=\frac{23}{ab}+\frac{17}{a+b}\ge\frac{23}{64}+\frac{17}{16}=\frac{91}{64}\)

Dấu = xảy ra khi  : \(a=b=8\)

19 tháng 2 2019

best toán :v  

29 tháng 5 2021

Ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

=> \(\frac{a^2+b^2}{ab}\ge2\)

=> a2 + b2 \(\ge\)2ab

=>  a2 + b2 - 2ab\(\ge\)0

=> (a - b)2 \(\ge\)0 (đúng)  

Dấu "=" xảy ra <=> a - b = 0 => a = b

=> Bất đẳng thức được chứng minh

29 tháng 5 2021

P = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=> \(\left(a+b+c\right).P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=> \(3P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=> \(3P=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge3+2+2+2=9\left(cmt\right)\)

=> P \(\ge3\)

Dấu "=" xảy ra <=> a = b = c 

mà a + b + c = 3

=> a = b = c = 1

Vậy Min P = 3 <=> a = b= c = 1