K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:b=\(\frac{2}{7}\)=>a=\(\frac{2}{7}\)*b

Ta có \(\frac{a+35}{b}\)=\(\frac{11}{14}\)

<=>(a+35)*14=11*b

<=>14a+490=11b

<=>14*\(\frac{2}{7}\)*b+490=11b

<=>4*b+490=11b

=>           490=11b-4b

=>           490=7b

=>          b=490:7

=>          b=70

=>a=70*\(\frac{2}{7}\)

=>a=20

Vậy a=20;b=70

3 tháng 5 2016

đề ghi rõ ra đi rồi mình làm cho

Ta có: a:b=\(\frac{2}{7}\)=>a=\(\frac{2}{7}\)*b

Ta có:\(\frac{a+35}{b}\)=\(\frac{11}{14}\)

=>(a+35)*14=11b

=>14a+490=11b

=>14*\(\frac{2}{7}\)*b+490=11b

=>4b+490=11b

=>490=11b-4b

=>490=7b

=>b=490:7

=>b=70

=>a=70*\(\frac{2}{7}\)

=>a=20

Vậy a=20;b=70(Đề là thêm 35 đơn vị vào a;còn lại giữ nguyên)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là

\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)

b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:

2 5 6 7 8 9 10 11 12 14 16

+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)

20 tháng 8 2016

5h sáng đã onl r sao . khi đó mk chưa ngủ dậyhehe

20 tháng 8 2016

Nguyễn Hoàng Minh chuẩn

23 tháng 11 2021

A giao B là (-2;-3)

A hợp B là (âm vô cực; 5]

16 tháng 7 2019

Cách 1. Ta có: Khi cộng vào mỗi số liệu của một dãy số liệu thống kê cùng một hằng số thì phương sai và độ lệch chuẩn không thay đổi. Do đó độ lệch chuẩn của dãy (2) vẫn là 2 kg.

Cách 2. Tính trực tiếp độ lệch chuẩn của dãy (2).

Đáp án: A.

NV
14 tháng 9 2021

Hàm \(y=f\left(x\right)\) có đồ thị (C):

\(\Rightarrow\) Khi tịnh tiến lên a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x\right)+a\)

Khi tịnh tiến xuống dưới a đơn vị ta được đồ thị hàm \(y=f\left(x\right)-a\)

- Khi tịnh tiến sang phải a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x-a\right)\)

- Khi tịnh tiến sang trái a đơn vị sẽ được đồ thị hàm \(y=f\left(x+a\right)\)

Do đó:

Khi tịnh tiến (P) lên 4 đơn vị ta được đồ thị hàm \(y=4x^2+4\)

Khi tịnh tiến (P) sang phải 2 đơn vị ta được đồ thị hàm: \(y=4\left(x-2\right)^2=4x^2-16x+16\)