Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^2\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=x^3z-x^3y^2+xy^3-y^3z^2+yz^2-x^2z^2+x^2y^2z^2-xyz\)
\(A=x^2-y^2-x+y\)
\(=\left(x^2-y^2\right)-\left(x-y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)
\(=\left(x+y-1\right)\left(x-y\right)\)
\(B=ax-ab+b-x\)
\(=\left(ax-ab\right)-\left(x-b\right)\)
\(=a\left(x-b\right)-\left(x-b\right)\)
\(=\left(a-1\right)\left(x-b\right)\)
\(D=x^2-2xy+y^2-m^2+2mn-n^2\)
\(=\left(x^2+y^2-2xy\right)-\left(m^2+n^2-2mn\right)\)
\(=\left(x-y\right)^2-\left(m-n\right)^2\)
\(=\left(x-y-m+n\right)\left(x-y+m-n\right)\)
\(E=x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+z^2+2yz\right)\)
\(=x^2-\left(y-z\right)^2\)
\(=\left(x+y-z\right)\left(z-y+z\right)\)
\(=>A=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =>A=\left(x-y\right)\left(x+y-1\right)\) ( dấu phía sau bị lỗi nha )
\(=>B=a\left(x-b\right)-\left(x-b\right)\\ =>B=\left(x-b\right)\left(a-1\right)\)
\(=>C=\left(a+b+c\right)\left(3x^2+36xy+108y^2\right)\)
\(=>C=3\left(a+b+c\right)\left(x^2+12xy+36y^2\right)\\ =>C=3\left(a+b+c\right)\left(x+6y\right)^2\)
\(\Rightarrow D=\left(x-y\right)^2-\left(m^2-2mn+n^2\right)\\ =>D=\left(x-y\right)^2-\left(m-n\right)^2\)
\(=>D=\left(x-y+m-n\right)\left(x-y-m+n\right)\)
\(=>E=x^2-\left(y^2+2yz+z^2\right)\\ =>E=x^2-\left(y+z\right)^2\)
\(=>E=\left(x-y-z\right)\left(x+y+z\right)\)
T I C K ủng hộ nha
CHÚC BẠN HỌC TỐT
\(A=5x^2z-10xyz+5y^2z=5z\left(x^2-2xy+y^2\right)=5z\left(x-y\right)^2\)
Thay x = 124, y = 24, z = 2 vào A, ta có:
\(5\times2\times\left(124-24\right)^2=10\times100^2=10\times10000=100000\)
Vậy A = 10 000 khi x = 124, y = 24, z = 2.
\(B=2x^2+2y^2-x^2z-y^2z+z-2=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)=\left(2-x\right)\left(x^2+y^2-1\right)\)
Thay x = 1, y = 1, z = - 1 vào B, ta có:
\(B=\left[2-\left(-1\right)\right]\left(1^2+1^2-1\right)=3\times1=3\)
Vậy B = 3 khi x = 1, y = 1, z = - 1.