\(\frac{1}{5^2}-\frac{1}{5^3}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(B=1-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}-\dfrac{49}{100}=\dfrac{1}{100}\)

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)+ \(\frac{1}{2008}\))                                                                           Giảia...
Đọc tiếp

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) 

b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với 

A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

                                                                           Giải

a 1\(\frac{3}{5}\)+ (\(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)) x = \(\frac{16}{5}\)\(\Leftrightarrow\) \(\frac{8}{5}\)+ [\(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\)x = \(\frac{16}{5}\)

\(\Leftrightarrow\)\(\frac{8}{5}\) + \(\frac{2}{5}\)x = \(\frac{16}{5}\)\(\Leftrightarrow\)\(\frac{2}{5}\)x = \(\frac{16}{5}\)\(-\)\(\frac{8}{5}\) \(\Leftrightarrow\) x = \(\frac{2}{5}\)\(\Leftrightarrow\)\(\frac{8}{5}\) : \(\frac{2}{5}\)\(\Leftrightarrow\)x=4

b 1 + \(\frac{1}{2}\)\(\frac{1}{3}\)+ ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\) 

 = (1 + \(\frac{1}{2008}\))  + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{2004}\)\(\frac{1}{2005}\)

= (1 + \(\frac{1}{2008}\)) + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{1004}\)\(\frac{1}{1005}\))

\(\frac{2009}{1\times2008}\) + \(\frac{2009}{2\times2007}\) +  ... + \(\frac{2009}{1004\times1009}\) 

= 2009(\(\frac{1}{1\times2008}\) + \(\frac{1}{2\times2007}\)+ ... + \(\frac{1}{1004\times1005}\)

Do đó A = 1 . 2 .3 ... 2007 . 2008 . (1 + \(\frac{1}{2}\) + \(\frac{1}{3}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

             = 2009(1 . 2 . 3 ... 2007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\)+ ... + \(\frac{1}{1004.1005}\) ) \(⋮\) 2009

Vì 1 . 2 . 3 ... 1007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\) + ... + \(\frac{1}{2004.2005}\)) là một số tự nhiên 

CÁC BẠN CÓ AI GIỐNG CÁCH LÀM CỦA MÌNH THÌ TRẢ LỜI NHÉ

1
8 tháng 5 2017

mk nghĩ là bn làm đúng đó !

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010

19 tháng 10 2017

Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Ghép tử và mẫu....

Vậy A = 2009

11 tháng 4 2019

A và B dễ 

Bài 2:

sai đề bài vì ngay từ cái phép tính đầu đã ko theo quy luật rồi 

11 tháng 4 2019

\(A=\frac{-3}{5}-\frac{2}{5}+2\)

\(A=-1+2=1\)

\(B=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}=\frac{1}{4}\)

nÀ NÍ sao lại = đây là dấu trừ hay cộng 1/4

16 tháng 7 2016

Giúp vsssssssssssssssssssssssssssssssssssssssss nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa .........................