Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(=\left(x^2+x+4\right)^2+3x\left(x^2+x+4\right)+5x\left(x^2+x+4\right)+15x^2\)
\(=\left(x^2+x+4+3x\right)\left(x^2+x+4+5x\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\cdot\left(x^2+6x+4\right)\)
c: \(=25x^2-49y^2-\left(5x+7y\right)\)
\(=\left(5x-7y\right)\left(5x+7y\right)-\left(5x+7y\right)\)
\(=\left(5x+7y\right)\left(5x-7y-1\right)\)
d: \(8x^3-36x^2+54x-27=\left(2x-3\right)^3\)
Bài 2:
a: \(A=a^2+b^2+c^2+2ab-2ac-2bc+a^2+b^2+c^2-2ab-2bc+2ac\)
\(=2a^2+2b^2+2c^2-4bc\)
\(=2+2\cdot9+2\cdot1-4\cdot3\cdot\left(-1\right)=22+12=34\)
b: \(B=\left(a+b-a+b\right)\left(a+b+a-b\right)=4ab=4\cdot2\cdot5=40\)
a) \(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)
b) \(16x^2-8x+1=\left(4x\right)^2-2.4x.1+1^2=\left(4x-1\right)^2\)
c) \(9x^2+6x+1=\left(3x\right)^2+2.3x.1+1^2=\left(3x+1\right)^2\)
d) \(36x^2+36x+9=\left(6x\right)^2+2.6x.3+3^2=\left(6x+3\right)^2\)
e) \(x^3+27=x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)
a, x2-x+1/4=(x-1/2)2
b, (x+1)3
c,(2x+1)3
d, (2-3x03
e, (10x)2-(x2+25)2=:[10x+(x2+25)][10x-(x2+25)]=(10x+x2+25)(10x-x2-25)
a, A = 27x3 + 54x2 + 36x + 4
=> A = (3x)3 + 2 . 3 . 9x2 + 3 . 3x . 4 + 8 - 4
=> A = [(3x)3 + 2 . 3 . (3x)2 + 3 . 3x . 22 + 23] - 4
=> A = (3x + 2)3 - 4
Thay x = -2002 vào A ta có: A = (3x + 2)3 - 4
=> A = [3 x (-2002) + 2]3 - 4 = [6006 + 2]3 - 4 = 60083 - 4
b, B = 2x2 + 4x + xy + 2y
=> B = 2x(x + 2) + y(x + 2)
=> B = (x + 2)(2x + y)
Thay x = 88; y = -76 vào B
=> B = (88 + 2)[2 . 88 + (-76)]
=> B = 90 . [176 + (-76)] = 90 . 100 = 9000
Tại x = 103/2 ta có :
\(M=5.\left(\dfrac{103}{2}\right)^3-36.\left(\dfrac{103}{2}\right)^2+54.\dfrac{103}{2}+27=590281,375\)
a ) \(\left(x+2\right)^3-\left(x-2\right)^3\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]\)
a) \(4x^2-12x+9=\left(2x\right)^2-2\cdot2x\cdot3+3^2=\left(2x-3\right)^2\)
b) \(4x^2+4x+1=\left(2x\right)^2+2\cdot2x\cdot1+1^2=\left(2x+1\right)^2\)
c) \(1+12x+36x^2=1^2+2\cdot1\cdot6x+\left(6x\right)^2=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2\cdot3x\cdot4y+\left(4y\right)^2=\left(3x-4y\right)^2\)
e) \(8x^3+1=\left(2x\right)^3+1^3=\left(2x+1\right)\left(4x^2+2x+1\right)\)
f) \(-8x^3+27=3^3-\left(2x\right)^3=\left(3-2x\right)\left(9+6x+4x^2\right)\)
a) Sửa đề: \(8x^3+36x^2+54x+27\)
Ta có: \(8x^3+36x^2+54x+27\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=\left(2x+3\right)^3\)
b) Ta có: \(x^2+4x+4\)
\(=x^2+2\cdot x\cdot2+2^2\)
\(=\left(x+2\right)^2\)