Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(4^2\right)^{17}.64^{36}}{8^{35}.32^{34}}\)
\(A=\frac{\left(2^4\right)^{17}.\left(2^6\right)^{36}}{\left(2^3\right)^{35}.\left(2^5\right)^{34}}\)
\(A=\frac{2^{68}.2^{216}}{2^{105}.2^{170}}=\frac{2^{284}}{2^{275}}=2^9=512\)
\(a,27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\\ b,=8^{31}\cdot32^5:64^4=\left(2^3\right)^{31}\cdot\left(2^5\right)^5:\left(2^6\right)^4=2^{93}\cdot2^{25}:2^{24}=2^{93+25-24}=2^{94}\)
a: \(A=\left(2^3\right)^2\cdot\left(2^5\right)^4=2^6\cdot2^{20}=2^{26}\)
b: \(=\left(3^3\right)^3\cdot\left(3^2\right)^4\cdot3^5=3^9\cdot3^8\cdot3^5=3^{22}\)
\(A=8^2.32^4=\left(2^3\right)^2.\left(2^5\right)^4=2^6.2^{20}=2^{26}\)
\(B=27^3.9^4.243=\left(3^3\right)^3.\left(3^2\right)^4.3^5=3^9.3^8.3^5=3^{22}\)
a) Ta có: \(3^{54}=\left(3^6\right)^9=729^9\)
Lại có: \(2^{81}=\left(2^9\right)^9=512^9\)
Ta có: \(729^9>512^9\Rightarrow3^{54}>2^{81}\)
b) Ta có: \(5\cdot125\cdot625=5^1\cdot5^3\cdot5^4=5^8\)
Lại có: \(625^3=\left(5^4\right)^3=5^{12}\)
Ta có: \(5^8< 5^{12}\Rightarrow5\cdot125\cdot625< 625^3\)
c) Xét: \(8^4\cdot16^3\cdot32\)
\(=\left(2^3\right)^4\cdot\left(2^4\right)^3\cdot2^5\)
\(=2^{12}\cdot2^{12}\cdot2^5\)
\(=2^{29}\)
Xét: \(64^4\cdot8^2\)
\(=\left(2^6\right)^4\cdot\left(2^3\right)^2\)
\(=2^{24}\cdot2^6\)
\(=2^{30}\)
Ta có: \(2^{29}< 2^{30}\Rightarrow8^4\cdot16^3\cdot32< 64^4\cdot8^2\)
a: \(A=8^2\cdot32^4=2^6\cdot2^{20}=2^{26}\)
b: \(B=27^3\cdot9^4\cdot243=3^9\cdot3^8\cdot3^5=3^{22}\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
B=[(45.79+45.21)]:90-5^2]:5+2^3 B=[(45.79+45.21):90-25]:5+8 B=[(45.(79+21):65]:13 B=[(45.100):65]:13 B=[4500:65]:13 B=4500:65:13
\(A=8^2.32^4=\left(2^3\right)^2.\left(2^5\right)^4=2^6.2^{20}=2^{26}\)