Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{m^2+2m+1}{m^2-1}\)
\(=\dfrac{\left(m+1\right)^2}{\left(m+1\right)\left(m-1\right)}\)
\(=\dfrac{m+1}{m-1}\)
b) Ta có: \(\dfrac{2a^4+3a^3+2a+3}{\left(a^2-a+1\right)\left(4a+6\right)}\)
\(=\dfrac{a^3\left(2a+3\right)+\left(2a+3\right)}{\left(a^2-a+1\right)\left(4a+6\right)}\)
\(=\dfrac{\left(2a+1\right)\left(a+1\right)\left(a^2-a+1\right)}{2\left(a^2-a+1\right)\left(2a+3\right)}\)
\(=\dfrac{a+1}{2}\)
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b
Ta có
\(\left(2m-a\right)^2+\left(3m-b\right)^2+\left(3m-c\right)^2=\)
\(=4m^2-4ma+a^2+9m^2-6mb+b^2+9m^2-6mc+c^2=\)
\(=22m^2-2m\left(2a+3b+3c\right)+a^2+b^2+c^2=\)
\(=22m^2-2m.11m+a^2+b^2+c^2=a^2+b^2+c^2\)
\(\left(a^2+4\right)^2-16a^2\\ =\left(a^2+4\right)^2-\left(4a\right)^2\\ =\left(a^2-4a+4\right)\left(a^2+4a+4\right)\\ =\left(a-2\right)^2\left(a+2\right)^2\)
Chọn A.
\(\Leftrightarrow a^8-a^6+a^6-a^4-a^4+a^2-2a+2=0\)
\(\Leftrightarrow a^6\left(a^2-1\right)+a^4\left(a^2-1\right)-a^2\left(a^2-1\right)-2\left(a-1\right)=0\)
\(\Leftrightarrow\left(a^6+a^4-a^2\right)\left(a-1\right)\left(a+1\right)-2\left(a-1\right)=0\)
\(\Leftrightarrow a=1\)