Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(Coi\) \(A=\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\right).x=1\frac{1}{5}\)
\(=\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right).x=\frac{6}{5}\)
\(\Rightarrow3A=\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right).x=\frac{6}{5}.3=\frac{18}{5}\) \(=\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right).x\)
\(=\left(\frac{1}{2}-\frac{1}{20}\right).x\)
\(=\frac{9}{20}.x=\frac{18}{5}\)
\(\Rightarrow x=\frac{18}{5}:\frac{9}{20}=8\)
Vậy \(x=8\).
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{3}{20}\)
\(A=\frac{12}{40}+\frac{12}{88}+\frac{12}{154}+\frac{12}{238}+\frac{12}{340}\)
\(A=\frac{12}{5\times8}+\frac{12}{8\times11}+\frac{12}{11\times14}+\frac{12}{14\times17}+\frac{12}{17.20}\)
\(A=4\times\left(\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}+\frac{3}{17\times20}\right)\)
\(A=4\times\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(A=4\times\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(A=4\times\frac{3}{20}=\frac{12}{20}=\frac{3}{5}\)
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)
\(=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+\frac{3}{17\cdot20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\cdot\frac{9}{20}\)
\(=\frac{3}{20}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{3}{20}\)
a)
<=> 720 : [ 41 - ( 7x^2 - 5 ) ] = 40
<=> 41 - ( 7x^2 - 5 ) = 720 : 40
<=> 41 - ( 7x^2 - 5 ) = 18
<=> 7x^2 - 5 = 41 - 18
<=> 7x^2 - 5 = 23
<=> 7x^2 = 23 + 5
<=> 7x^2 = 28
<=> x^2 = 28 : 7
<=> x^2 = 4
<=> x^2 = 2^2
<=> x = 2
b) 10: 1/10
40: 1/40
88: 1/88
154: 1/154
238: 1/238
Rồi b tách mẫu số ra như sau:
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}\)
=> \(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}+\frac{1}{14\times17}\)
Đó rồi tính tiếp nha
a, 41-(7x^2-5)=720:40=18
7x^2-5=41-18=23
7x^2=23+5=28
x^2=28:7=4
x= 2 và -2
b, luôn bằng 0 có tính chất
\(A=\frac{9}{10}+\frac{39}{40}+\frac{87}{88}+\frac{153}{154}+\frac{237}{238}+\frac{339}{340}=\frac{117}{20}\)
\(suyra:A<1\)
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3A=3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(A=\left(\frac{1}{2}-\frac{1}{20}\right)\div3=\frac{9}{20}\div3=\frac{9}{20.3}=\frac{3}{20}\)
Vậy ................
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{9999}{10000}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{99.101}{100.100}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right).\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right).\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(B=\frac{1\cdot2\cdot3\cdot..\cdot99}{2\cdot3\cdot4\cdot..\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(B=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}\)
vậy......
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/3.(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17+3/17.20)
A=1/3.(1/2-1/20)
=3/20
B=1.3/2.2+2.4/3.3+3.5/4.4+...+99.101/100.100
B=(1.2.3...99).(3.4.5...101)/(2.3.4...100).(2.3.4...100)
B=\(\frac{1.2....99}{2.3...100}\).\(\frac{3.4...101}{2.3...100}\)
B=1/100.101/2=101/200
\(A=\dfrac{5}{40}+\dfrac{5}{88}+\dfrac{5}{154}+\dfrac{5}{238}+\dfrac{5}{340}\)
\(=\dfrac{5}{5\cdot8}+\dfrac{5}{8\cdot11}+\dfrac{5}{11\cdot14}+\dfrac{5}{14\cdot17}+\dfrac{5}{17\cdot20}\)
\(=\dfrac{5}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=\dfrac{5}{3}\cdot\dfrac{3}{20}=\dfrac{1}{4}\)