K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

a,52000=(52)1000=251000

25000=(25)1000=321000

vì 251000<321000=>52000<25000

b,23n=(23)n=8n

32n=(32)n=9n

vì 8n<9n=>23n<32n

**** cho mình di bạn

6 tháng 8 2018

\(a,3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Có \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

\(b,5^{200}=\left(5^2\right)^{100}=25^{100}\)

\(2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=5^{200}\)

6 tháng 8 2018

b , Áp dụng và so sánh  : 

3^200 và 2^300

3^200 = ( 3^2 )^100 =  9^100 

2^300 = ( 2^3 )^100 = 8^100

Vì 9^100 > 8^100 => 3^200 > 2^300 

Vậy 3^200 > 2^300

5^200 và 2^500 

5^200 = ( 5^2 )^100 = 25^100

2^500 = ( 2^5 )^100 = 32^100

Vì 26^100 < 32^100 => 5^200 < 2^500

Vậy 5^200 < 2^500

7 tháng 10 2019

1a)

Có A=\(33^{44}=3^{44}\cdot11^{44}=\left(3^4\right)^{11}\cdot11^{44}\)

  B= \(44^{33}=4^{33}\cdot11^{33}=\left(4^3\right)^{11}\cdot11^{33}\)

Vì \(3^4>4^3\)=> \(\left(3^4\right)^{11}>\left(4^3\right)^{11}\)

mà \(11^{44}>11^{33}\)

=> \(\left(3^4\right)^{11}+11^{44}>\left(4^3\right)^{11}+11^{33}\)

=>\(33^{44}>44^{33}\)

=> A > B

7 tháng 10 2019

Bài 1 :                                             Bài giải

          Ta có : 

\(A=33^{44}=\left(33^4\right)^{11}=1185921^{11}\)

\(B=44^{33}=\left(44^3\right)^{11}=85184^{11}\)

\(\text{ Vì }1185921^{11}>85184^{11}\text{ }\Rightarrow\text{ }A>B\)

23 tháng 4 2021

Ai trả lời nhanh nhất thì mình sẽ k cho.

19 tháng 9 2017

câu 1: 

28=256

2.53=2.125=250

vì 256 > 250 nên 28> 2.53

câu 2:

a.3n: 9=243

a.3n= 243 : 9

a.3n=27.........(đến đây thì (@_@))

b) n= 3 hoặc 4.

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))

11 tháng 2 2017

giúp ik, mai ik hok òi, mk ngu lém giúp ik