K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

12 tháng 8 2020

Bài làm:

a) \(a^2-a=a\left(a-1\right)\)

Vì a là số nguyên

=> a ; a-1 là 2 số nguyên liên tiếp

Vì trong 2 số nguyên liên tiếp tồn tại 1 số chẵn ( chia hết cho 2)

=> a(a-1) chia hết cho 2

=> \(a^2-a⋮2\)

Sai sai nên sửa đề:

b) \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)

Vì đó là tích 3 số nguyên liên tiếp và trong 3 số đó luôn tồn tại 1 số chia hết cho 3

=> (a-1)a(a+1) chia hết cho 3

=> \(a^3-a⋮3\)

c) \(a^5-a=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)

\(=\left(a-1\right)a\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Vì (a-2)(a-1)a(a+1)(a+2) là tích 5 số nguyên liên tiếp và trong 5 số đó luôn tồn tại 1 số chia hết cho 5

=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5

Mà 5(a-1)a(a+1) chia hết cho 5

=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

12 tháng 8 2020

+) Ta có a2 - a = a( a - 1 )

Vì a , a - 1 là hai số nguyên liên tiếp => Ít nhất 1 trong 2 số chia hết cho 2

=> a( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2 ( đpcm )

+) Ta có a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) ( sửa 3 thành a may ra tính được )

Vì a ; a - 1 ; a + 1 là 3 số nguyên liên tiếp => Ít nhất 1 trong 3 số chia hết cho 3

=> a( a - 1 )( a + 1 ) chia hết cho 3 hay a3 - a chia hết cho 3 ( đpcm )

mk nghĩ bn vào chtt đi chứ giải ra dài quá

1 tháng 11 2020

Ta có : 227 + 225 = 225( 22 + 1 ) = 225.5 chia hết cho 5

=> đpcm

15 tháng 3 2016

a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)

Ta có: 55 chia hết cho 11 

Nên \(7^4.55\)chia hết cho 11

Hay \(7^6+7^5-7^4\)chia hết cho 11

Câu b,c làm tương tự