Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{6}=\frac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{x-y}{6-9}=\frac{30}{-3}=-10\)
\(\Rightarrow\frac{x}{6}=-10\Rightarrow x=-60\)
\(\frac{y}{9}=-10\Rightarrow y=-90\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
1) Ta có: \(2x=3y.\)
=> \(\frac{x}{y}=\frac{3}{2}\)
=> \(\frac{x}{3}=\frac{y}{2}\) và \(x+y=10.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{10}{5}=2.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{y}{2}=2\Rightarrow y=2.2=4\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;4\right).\)
2) Ta có: \(3x=4y.\)
=> \(\frac{x}{y}=\frac{4}{3}.\)
=> \(\frac{x}{4}=\frac{y}{3}\)
=> \(\frac{2x}{8}=\frac{3y}{9}\) và \(2x+3y=34.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{8}=\frac{3y}{9}=\frac{2x+3y}{8+9}=\frac{34}{17}=2.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=2\Rightarrow x=2.4=8\\\frac{y}{3}=2\Rightarrow y=2.3=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(8;6\right).\)
Câu 3) làm tương tự như câu 1) nhé.
Chúc bạn học tốt!
a) ta có: \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Do đó:
\(\frac{x}{17}=-3\Rightarrow x=17.\left(-3\right)=-51\)
\(\frac{y}{3}=-3\Rightarrow y=3.\left(-3\right)=-9\)
Vậy ...
b) Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{25}=\frac{100}{25}=4\)
Do đó:
\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
Vậy ...
c) Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+17y}{12+4x}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
\(\Rightarrow\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
\(\Rightarrow6+2x=5x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
và \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Leftrightarrow\left(1+5y\right).8=\left(1+7y\right).10\)
\(\Rightarrow8+40y=10+70y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=-\frac{1}{15}\)
Vậy...
hok tốt!!