Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)
Có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)
\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)
b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)
Có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)
\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
\(A=4\left(1-sin^2x\right)-6sin^2a=4-10sin^2a=4-10.\left(\frac{1}{5}\right)^2=...\)
\(tana+cota=3\Leftrightarrow\frac{sina}{cosa}+\frac{cosa}{sina}=3\Leftrightarrow\frac{sin^2a+cos^2a}{sina.cosa}=3\)
\(\Leftrightarrow\frac{1}{sina.cosa}=3\Leftrightarrow sina.cosa=\frac{1}{3}\)
\(C=cot^2a-cos^2a.cot^2a=cot^2a\left(1-cos^2a\right)=cot^2a.sin^2a\)
\(=\frac{cos^2a}{sin^2a}.sin^2a=cos^2a=1-sin^2a=1-\left(\frac{3}{4}\right)^2=...\)