Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]
= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )
= 1x1008 = 1008
Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )
Ta có \(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^2+2^2+2^3+...+2^{2016}\)
Ta có \(2^2+2^2=2^2.2=2^3\)
\(2^3+2^3=2^3.2=2^4\)
..........................................
Tương tự với các số hạng còn lại ta được
\(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}+2^{2016}=2^{2016}.2=2^{2017}\)chia hết cho \(2^{2017}\)
Vậy A chia hết cho \(2^{2017}\)
\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)
\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)
\(B=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)
\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)
\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)
A = 31 + 32 +33 + 34 +.....+32015+ 32016
A = (31 + 32) +(33 + 34) +.....+ (32015+ 32016)
A = 3(1+3) + 32(1+3) + .....+ 32015(1+3)
A = 3.4 +32.4 +....... + 32015.4
A = 4(3 +32 +....+ 32015) chia hết cho 4
===================================================
A =31 + 32 +33 + 34 + 35 +36 +.....+32014 + 32015+ 32016
A = (31 + 32 +33 ) +(34 + 35 +36) +.....+ (32014 + 32015+ 32016)
A = 3(1+3+32) + 34(1+3+32) + .....+ 32014(1+3+32)
A = 3.13 +34.13 +....... + 32014.13
A = 13.(3 +34 +....+ 32014) chia hết cho 13
ta có 4+4^2+...+4^2016
=>(4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+...+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)
=>4.(1+4+4^2+4^3+4^4+4^5)+4^7.(1+4+4^2+4^3+4^4+4^5)+...+4^2011.(1+4+4^2+4^3+4^4+4^5)
=>4.1365+4^7.1365+...+4^2011.1365
=>1365.(4+4^7+...+4^2011)chia hết cho 105 vì 1365 chia hết cho 105
Vậy C chia hết cho 105
ta có:4+4^2+4^3+....+4^2016=4^1+4^2+4^3+....+4^2016
=>có (2016-1):1+1=2016 số số hạng
C=(4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+....+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)
C=4(1+4+4^2+
sorry nha mình bận