Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
f: \(3ab-6a+b-2\)
\(=3a\left(b-2\right)+\left(b-2\right)\)
\(=\left(b-2\right)\left(3a+1\right)\)
(3x-4-x-1)(3x-4+x+1)=0
(2x-5)(4x-3)=0
2x-5 = 0 hoặc 4x-3=0
2x=5 hoặc 4x=3
x=5/2 hoặc x=3/4
a. 6x2 - (2x + 5)(3x - 2) = 7
<=> 6x2 - 6x2 + 4x - 15x + 10 = 7
<=> -11x = -3
<=> \(x=\dfrac{3}{11}\)
b. (5 - x)(25 + 5x + x2) + x(x2 - 7) = 25
<=> 125 - x3 + x3 - 7x = 25
<=> -7x = 25 - 125
<=> -7x = -100
<=> \(x=\dfrac{100}{7}\)
c. (7 - 2x)2 + (3 + 2x)(3 - 2x) = 30
<=> 49 - 28x + 4x2 + 9 - 4x2 = 30
<=> 4x2 - 4x2 - 28x = 30 - 49 - 9
<=> -28x = -28
<=> x = 1
a) <=> |-5X| =3X +16
DK : X >-16/3
-5X = 3X +16 HOAC -5X =-3X-16
-8X = 16 HOAC -2X = -16
X= -2 HOAC X= 8
VẬY S= {-2; 8}
b) <=> 3X +X = 1+2
<=> 4X = 3
<=> X=3/4
VẬY S={3/4}
c) DK : X> 10/4
-2X = 4X-10 HOAC -2X = -4X +10
-6X = 10 HOAC 2X = 10
X= -5/3 (LOAI) HOAC X= 5 (NHAN)
VẬY S={5}
LƯU Ý: CÓ CHỮ " HOẶC" THÌ KHÔNG CẦN MŨI TÊN HAI CHIỀU
-MÌNH CHỈ GHI CÁCH GIẢI THÔI NHÉ
CHÚC BẠN HỌC TỐT .
a: BC=căn 6^2+8^2=10cm
bD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1
=>AD=3cm; CD=5cm
b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc B chung
=>ΔBHA đồng dạng với ΔBAC
=>BH/BA=BA/BC
=>BH*BC=BA^2
c: Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA
=>IH/IA=BA/BC=AD/DC
Mọi người giải giúp mình bài này với ạ, cảm ơn mn nhiều, chỉ cần câu c ý chứng minh góc 90 độ thôi ạ
a: Xét tứ giác ABQN có
\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)
=>ABQN là hình chữ nhật
b: Xét ΔCAD có
DN,CH là các đường cao
DN cắt CH tại M
Do đó: M là trực tâm của ΔCAD
=>AM\(\perp\)CD
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
=>\(HA=\sqrt{HB\cdot HC}\)
A = 3x - x2
C1: A = \(\left(\sqrt{3x}\right)^2-x^2\)
A = \(\left(\sqrt{3x}-x\right)\left(\sqrt{3x}+x\right)\)
C2: x(3 - x)
Mình ghi thiếu .Tìm giá trị ớn nhất