K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

mình thay A,B,C thành a,b,c cho dễ nhìn hơn nhé

5 tháng 4 2016

  a3+b3+c3-3abc

=(a+b)3-3ab(a+b)-3abc+c3

=(a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b+c)

=(a+b+c)[(a+b+c)2-3ab-3bc-3ca]

=(a+b+c)(a2+b2+c2+2ab+2bc+2ca-3ab-3bc-3ca)

=(a+b+c)(a2+b2+c2-ab-bc-ca)

=1/2(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ca)

=1/2(a+b+c)(a2-2ab+b2+b2-2bc+c2+c2-2ca+a2)

=1/2(a+b+c)[(a-b)2+(b-c)2+(c-a)2]

19 tháng 10 2018

a3 + b3 + c3 - 3abc

= (a3 + 3a2b + 3ab2 + b3 ) + c3 - 3abc - 3a2b - 3ab2

=[(a+b)3 + c3 ]- (3abc+3a2b+3ab2)

=(a+b+c)[(a+b)2 - (a+b)c + c2 ] - 3ab(c+a+b)

=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-bc-ca)

29 tháng 11 2018

x3-x+3x2y+3xy2+y3-y

=x2(x-1)+3(x2y+xy2)+y2(y-1)

=x2(x-1)+3(x2.y+y2.x)+y2(y-1)

=x2(x-1)+3{[x(x+1)+y(y+1)]}+y2(y-1)

=x2(x-1)+3.x(x+1)+3.y(y+1)+y2(y-1)

=x2(x-1)+2x2+3.x(x+1)+3.y(y+1)+y2(y-1)+2y2-2x2-2y2

=x2(x+1)+3.x(x+1)+3.y(y+1)+y2(y+1)-2x2-2y2

=(x2+3)(x+1)+(y2+3)(y+1)-2(x2+y2)

29 tháng 11 2018

ta có : (x*3+3x*2y+3xy*2+y*3)-(x+y)

=(x+y)*3-(x+y)

=(x+y)((X+Y)*2-1)

(x+y)(x+y+1)(x+Y-1)

19 tháng 8 2016

Bài 1 :

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

Bài 2 : Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3-3abc=-c^3\) ( Vì \(a+b=-c\) )

\(\Rightarrow a^3+b^3+c^3=3abc\)

19 tháng 8 2016

Bài 1:

x2 +4x-y2+4

=(x2+4x+4)-y2

=(x+2)2-y2

=(x-y+2)(x+y+2)

Bài 2:

 a3+b3+c3 =  3abc

=>a3+b3+c3-3abc=0

=>[(a+b)3+c3]-3ab(a+b)-3abc=0

=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=0

=>(a+b+c)(a2+b2+c2-ac-bc-ab)=0

Từ a+b+c=0

=>0*(a2+b2+c2-ac-bc-ab)=0 (luôn đúng)

 

7 tháng 8 2017

\(b.\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b+c-a\right)\left(3a^2+b^2+c^2+3ab+2bc+3ac\right)-\left(b^3+c^3\right)\)

\(=\left(b+c\right)\left(3a^2+b^2+c^2+3ab+2bc+3ac\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+b^2+c^2+3ab+2bc+3ac-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+3bc\right)\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

7 tháng 8 2017

a ) \(a^3+b^3+c^3-3abc\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

14 tháng 8 2016

Bài 1"

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\\ =\left(x+2+y\right)\left(x+2-y\right)\)

Baif2:

Có: a+b+c=0

=>a+b=-c

=>\(\left(a+b\right)^3=-c^3\)

=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)

=>\(a^3+b^3-3abc=-c^3\) (vì a+b=-c)

=>\(a^3+b^3+c^3=3abc\)

14 tháng 8 2016

Bài 1. Phân tích đa thức thành nhân tử

     x + 4x - y2 + 4

     = ( x2 - y2 ) + ( 4x + 4 )

     =( x + y ) ( x - y ) + 4 ( x + 1)  

5 tháng 8 2015

a^3+b^3+c^3−3abc
=a^3+3ab(a+b)+b^3+c^3−3abc−3ab(a+b)
=(a+b)^3+c^3−3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2−ab−ac+c^2)−3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)

5 tháng 8 2015

     a^3 + b^3 + c^3 - 3abc 

=  ( a+ b)^3 - 3ab ( a+ b) - 3abc 

= ( a+ b +c )^3 - 3 ( a + b ).c(a + b +c ) -3ab (a+ b ) -3abc

= ( a+ b +c)^3 - 3(a+b).c(a+b+c) - 3ab(a+b+c)

= ( a+  b +c )[ ( a + b +c )^2 - 3(a+b).c - 3ab ] 

= ( a+  b + c ) [ a^2 + 2ab + b^2 + 2bc+ c^2 +2 ac - 3ac - 3bc - 3ab )

= ( a + b + c)(a^2 + b^2 + c^2 -ab - bc- ca)

Tick đúng nha 

 

 

22 tháng 5 2017

\(x^4+x^3-4x^2+x+1\)

\(=x^4+3x^3+x^2-2x^3-6x^2-2x+x^2+3x+1\)

\(=x^2\left(x^2+3x+1\right)-2x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)\)

\(=\left(x^2-2x+1\right)\left(x^2+3x+1\right)\)

\(=\left(x-1\right)^2\left(x^2+3x+1\right)\)

28 tháng 5 2017

bắt quả tang nha