K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

\(a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)=a^3+b^3-\left(a-b\right)^3\)

\(=a^3+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3=3a^2b-3ab^2+2b^3\)

8 tháng 9 2021

`a^3 + b^3 - (a^2 - 2ab + b^2) (a-b)`

`= a^3 + b^3 - (a-b)^2 (a-b)`

`= a^3 + b^3 - (a-b)^3`

`= a^3 + b^3 - (a^3 - 3a^2b + 3ab^2 - b^3)`

`= a^3 + b^3 - a^3 +3a^2b - 3ab^2 +b^3`

`= 3a^2b - 3ab^2 + 2b^3`

11 tháng 7 2017

1) (a+b)^2

=(a+b)(a+b)

=a^2+ab+ab+b^2

=a^2+2a+b^2

2) (a-b)^2

=(a-b)(a-b)

=a^2-ab-ab+b^2

=a^2-2ab+b^2

3)(a-b)(a+b)

=a^2+ab-ab-b^2

=a^2-b^2

4) (a+b)^3

=(a+b)^2(a+b)

=(a^2+2ab+b^2)(a+b) ( chứng minh câu a)

=a^3+a^2b+2ab^2+2a^2b+ab^2+b^3

=a^3+3a^2b+3ab^2+b^3

5) (a-b)^3

=(a-b)^2(a-b)

=(a^2-2ab+b^2)(a-b) ( chứng minh câu b)

=a^3-a^2b+2ab^2-2a^2b+ab^2-b^3

=a^3-3a^2b+3ab^2-b^3

11 tháng 7 2016

Chứng minh đẳng thức:

1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải

2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp

3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b=vp

4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp

5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp

6) (a+b)=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp

7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b=a3-3a2b+3ab2-b3=vp

30 tháng 6 2016

hằng đẳng thức thứ nhất sai rồi bạn , phải là 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

30 tháng 6 2016

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

15 tháng 9 2020

C = ( a + b - c )2 - ( a - c )2 - 2ab + 2bc

= [ ( a + b ) - c ]2 - ( a2 - 2ac + c2 ) - 2ab + 2bc

= ( a + b )2 - 2( a + b )c + c2 - a2 + 2ac - c2 - 2ab + 2bc

= a2 + b2 + 2ab - 2bc - 2ac - a2 + 2ac - 2ab + 2bc

= b2

D = ( a + b + 1 )3 - ( a + b - 1 )3 - 6( a + b )2

= [ ( a + b ) + 1 ]3 - [ ( a + b ) - 1 ]3 - 6( a2 + 2ab + b2 )

= [ ( a + b )3 + 3( a + b )2.1 + 3( a + b ).12 + 13 ] - [ ( a + b )3 - 3( a + b )2.1 + 3( a + b ).12 - 13 ] - 6a2 - 12ab - 6b2

= [ ( a3 + 3a2b + 3ab2 + b3 ) + 3( a2 + 2ab + b2 ) + 3a + 3b + 1 ]  - [ ( a3 + 3a2b + 3ab2 + b3 ) - 3( a2 + 2ab + b2 ) + 3a + 3b - 1 ] - 6a2 - 12ab - 6b2

= ( a3 + 3a2b + 3ab2 + b3 + 3a2 + 6ab + 3b2 + 3a + 3b + 1 ) - ( a3 + 3a2b + 3ab2 + b3 - 3a2 - 6ab - 3b2 + 3a + 3b - 1 ) - 6a2 - 12ab - 6b2

= a3 + 3a2b + 3ab2 + b3 + 3a2 + 6ab + 3b2 + 3a + 3b + 1 - a3 - 3a2b - 3ab2 - b3 + 3a2 + 6ab + 3b2 - 3a - 3b + 1 - 6a2 - 12ab - 6b2

= 2

< D hơi dài nên có thể có sai sót >

30 tháng 7 2018

1. (a+b).(a+b)=\(\left(a+b\right)^2\)

2. (a-b).(a-b)=\(\left(a-b\right)^2\)

3. (a+b).(a-b)=\(a^2-b^2\)

4. (a+b).(a2- ab +b2)=\(a^3+b^3\)

5. (a-b).(a2 + ab + b2)=\(a^3-b^3\)

6. (a+b).(a2+ 2ab + b2)=\(\left(a+b\right).\left(a+b\right)^2=\left(a+b\right)^3\)

7. (a-b).(a2- 2ab + b2)=\(\left(a-b\right).\left(a-b\right)^2=\left(a-b\right)^3\)

9 tháng 7 2018

Easy thật : 

\(a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3+b^3-\left(a-b\right)^2\left(a-b\right)\)

\(=a^3+b^3-\left(a-b\right)^3\)

Thay \(a=-4;b=4\)vào biểu thức , ta được : 

\(\left(-4\right)^3+4^3-\left(-4-4\right)^3\)

\(=8^3\)

\(=512\)

3 tháng 10 2020

a3 + b3 - ( a2 - 2ab + b2 )( a - b )

= a3 + b3 - ( a - b )2( a - b )

= a3 + b3 - ( a - b )3

Thế a = -4 ; b = 4 ta được

(-4)3 + 43 - ( -4 - 4 )3

= -64 + 64 - ( -512 )

= 512

3 tháng 10 2018

các bạn ơi, giúp mk vs ngày mai mk phải học rồi!!!

help me-.- help me :)

Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)

=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc  - c^2)

=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]

=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2

Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10

Thay a - b = 7 ; b – c = 3; a - c  = 10 vào P, ta được:

P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)

= 1/2.(49 + 9 + 100)/(49 – 9)

= 1/2.158/40

= 158/80

= 79/40

# Chúc bạn học tốt!

13 tháng 12 2020

\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)

\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)

\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)

bạn ktra lại đề :)