Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=9^23 + 5 x 3^43
A=(3^2)^23 + 5 x 3 ^43
A=3^46+5x3^43
A=3^43(3^3+5)
A=3^43(27 + 5)
A=3^43x32
vì 32 chia hết cho 32
vậy A chia hết cho 32
số mũ của dãy cộng :
( 24 - 1 ) : 1 + 1 = 24 ( mũ )
tổng các mũ :
( 24 + 1 ) x 24 : 2 = 300
A = 3300
vậy thì a có chia hết cho 120 không .
câu trả lời theo mình là không
nhé !
mong các bạn giúp đỡ trong thời gian tới
A=3+32 +33+........+324 chia hết cho 13 mới đúng chứ chia hết cho 12 mk ko bít làm
A=(3+32+33)+(34+35+36)+.....+(322+323+324)
A=3(1+3+32)+34(1+3+32)+......+322(1+3+32)
A=(1+3+32)(3+34+....+322)
A=13(3+34+....+322)
=> A chia hết cho 13
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
\(a=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)=\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+2^7+...+2^{99}\right)⋮3\)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Ta có:
A= 2+22+23+…+22004
A=2(1+2)+23(1+2)+…+22003(1+2)
Vậy A chia hết cho 3.
A=2(1+2+22) + 24(1+2+22)+…+22002(1+2+22).
Vậy A chia hết cho 7.
A=2(1+2+22+23)+25(1+2+22+23)+…+22001 (1+2+22+23)
Vậy A chia hết cho 15.
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32