\(3^2.3^3. ... .3^{24}\)

chứng minh rằng: A\(⋮12\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

\(A=3+3^2+..+3^{24}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{23}+3^{24}\right)\\ =12+3^2\left(3+3^2\right)+....+3^{22}\left(3+3^2\right)\\ =12+3^2.12+...+3^{22}.12\\ =12\left(1+3^2+...+3^{22}\right)⋮12\)

28 tháng 12 2017

nhân ha chia ậy bạn

28 tháng 11 2017

1)

a) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{28}+3^{29}+3^{30}\)

\(\Leftrightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)

\(\Leftrightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+....+3^{28}\left(1+3+3^2\right)\)

\(\Leftrightarrow A=3.13+3^4.13+....+3^{28}.13\)

\(\Leftrightarrow A=13\left(3+3^4+....+3^{28}\right)⋮13\left(dpcm\right)\)

b) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\)

\(\Leftrightarrow A=\left(3+3^2+3^3+3^4+3^5+3^6\right)+....+\left(3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\right)\)

\(\Leftrightarrow A=3\left(1+3+3^2+3^3+3^4+3^5\right)+....+3^{25}\left(1+3+3^2+3^3+3^4+3^5\right)\)

\(\Leftrightarrow A=3.364+....+3^{25}.364\)

\(\Leftrightarrow A=364\left(3+3^5+3^{10}+....+3^{25}\right)\)

\(\Leftrightarrow A=52.7\left(3+3^5+3^{10}+....+3^{25}\right)⋮52\left(dpcm\right)\)

28 tháng 11 2017

2) \(A=3+3^2+3^3+....+3^{30}\)

\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{30}\right)\)

\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{30}+3^{31}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+....+3^{30}+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)

\(\Leftrightarrow2A=3^{31}-3\)

\(\Leftrightarrow A=\dfrac{3^{31}-3}{2}\)

Vậy A không phải là số chính phương

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

8 tháng 7 2018

1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)

\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)

\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)

\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)

\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120

       =(3+3^2+3^3)+......+(3^118+3^119+3^120)

       =3(1+3+3^2)+....+3^118(1+3+3^2)

        = 3.13+...+3^118. 13

        = 13( 3+...+3^118) chia hết cho 13

c, A = 3+3^2 +3^3 + 3^4 +....+3^120

       = (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)

       = 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)

       = 3.40+ ...+3^117 .40

      = 40 .( 3+....+3^117) chia hết cho 40

19 tháng 5 2021

b

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}\)

Ta thấy:

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( có 10 phân số \(\frac{1}{20}\)) = \(\frac{1}{20}\).10 = \(\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 phân số \(\frac{1}{30}\)) = \(\frac{1}{30}\).10 = \(\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( có 10 phân số \(\frac{1}{40}\)) = \(\frac{1}{40}\).10 = \(\frac{1}{4}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)( có 10 phân số \(\frac{1}{50}\)) =\(\frac{1}{50}.10=\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( có 10 phân số \(\frac{1}{60}\)) =\(\frac{1}{60}.10=\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)( có 10 phân số \(\frac{1}{70}\)\(=\frac{1}{70}.10=\frac{1}{7}\)

=> A> \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{223}{140}=\frac{699}{420}>\frac{560}{420}=\frac{4}{3}\)

=> A > \(\frac{4}{3}\)

19 tháng 5 2021

có bài toán nào khó thì ib mk nha