Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/3 = b/2 => a/21 = b/14
b/7 = c/5 => b/14 = c/10
=> a/21 = b/14 = c/10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{6a-14b+10c}{126-196+100}=\frac{60}{30}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\\\frac{b}{14}=2\\\frac{c}{10}=2\end{cases}\Rightarrow\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}}\)
Vậy,...............
Ta có:
\(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{6a}{126}=\frac{14b}{196}=\frac{10c}{100}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{6a}{126}=\frac{14b}{196}=\frac{10c}{100}=\frac{6a-14b+10c}{126-196+100}=\frac{60}{30}=2\)
Suy ra :
\(\frac{6a}{126}=2\Leftrightarrow6a=252\Leftrightarrow a=42\)
\(\frac{14b}{196}=2\Leftrightarrow14b=392\Leftrightarrow b=28\)
\(\frac{10c}{100}=2\Leftrightarrow10c=200\Leftrightarrow c=20\)
Vậy :\(\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2a}{4}=\frac{3c}{9}=\frac{5c}{20}\)
Áp dụng tích chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3c}{9}=\frac{5c}{20}=\frac{2a+3c-5c}{4+9-20}=\frac{-28}{-7}=4\)
\(\Rightarrow\frac{2a}{4}=4\Rightarrow2a=4.4=16\Rightarrow a=16:2=8\)
\(\Rightarrow\frac{3b}{9}=4\Rightarrow3b=4.9=36\Rightarrow b=36:3=12\)
\(\Rightarrow\frac{5c}{20}=4\Rightarrow5c=4.20=80\Rightarrow c=80:5=16\)
Vậy a = 8
b = 12
c = 16
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\)
\(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta đươc:
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-2c}{8+12-30}=\frac{10}{-10}=-1\)
\(\Rightarrow a=-1.8=-8\)
\(b=-1.12=-12\)
\(c=-1.15=-15\)
Ta có A = 3k
B = 5k
=> 3k . 5k = 15. k^2 = 60
=> k^2 = 4
=> k = 2
=> A = 6
B = 15