
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a^3-3a+3b-b^3=\left(a^3-b^3\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+b^2+ab-3\right)\)
\(x^2-2014x+2013=x^2-2013x-x+2013=x\left(x-2013\right)-\left(x-2013\right)=\left(x-2013\right)\left(x-1\right)\)
a3 - 3a + 3b - b3
= ( a3 - b3 ) - ( 3a - 3b )
= ( a - b )( a2 + ab + b2 ) - 3( a - b )
= ( a - b )( a2 + ab + b2 - 3 )
x2 - 2014x + 2013
= x2 - 2013x - x + 2013
= x( x - 2013 ) - ( x - 2013 )
= ( x - 2013 )( x - 1 )


= a^3 (b-c) + b^3 ( c- b + b - a) + c^3 ( a-b)
= a^3 (b-c) - b^3 ( b-c) - b^3(a-b) + c^3(a-b)
= (b-c)(a^3 - b^3) - (a-b)(b^3 - c^3)
=(b-c)(a-b)(a^2+ab+b^2) - (a-b)(b-c)(b^2+bc+c^2)
= (a-b)(b-c)(a^2 + ab + b^2 - b^2 - bc - c^2)
= (a-b)(b-c)( a^2 - c^2 + ab - bc)
=(a-b)(b-c)[(a-c)(a+c) + b(a-c)]
=(a-b)(b-c)(a-c)(a+b+c)


a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)

cháu tôi học ghê thế :))
a) 3x3 - 7x2 + 17x - 5
= 3x3 - x2 - 6x2 + 2x + 15x - 5
= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )
= ( 3x - 1 )( x2 - 2x + 5 )
b) Đặt A = a2 + ab + b2 - 3a - 3b + 3
=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12
= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )
= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b
hay 4A ≥ 0 => A ≥ 0
Dấu "=" xảy ra <=> a = b = 1
a.
\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)
\(=\left(3x-1\right)\left[x^2-2x+5\right]\)
b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)
\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)
dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)

Bài làm:
a) \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(\left(x-y\right)\left(x-y-z\right)\)
a/ \(x^2-2xy+y^2-zx+yz.\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c/ \(x^2-y^2-2x-2y.\)
\(=x^2-2x+1-y^2-2y-1\)
\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
\(a^3-3a+3b-b^3\)
\(=\left(a^3-b^3\right)-\left(3a-3b\right)\)
\(=\left(a-b\right).\left(a^2+ab+b^2\right)-3.\left(a-b\right)\)
\(=\left(a-b\right).\left(a^2+ab+b^2-3\right)\)