K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 

ĐKXĐ: \(x\notin\left\{5;-5;-1;0\right\}\)

\(P=\left(\dfrac{15-x}{x^2-25}+\dfrac{2}{x+5}\right):\dfrac{x+1}{2x^2-10x}\)

\(=\left(\dfrac{15-x}{\left(x-5\right)\left(x+5\right)}+\dfrac{2}{x+5}\right)\cdot\dfrac{2x\left(x-5\right)}{x+1}\)

\(=\dfrac{15-x+2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\cdot\dfrac{2x\left(x-5\right)}{x+1}\)

\(=\dfrac{x+5}{\left(x+5\right)}\cdot\dfrac{2x}{x+1}=\dfrac{2x}{x+1}\)

b: Thay x=1 vào P, ta được:

\(P=\dfrac{2\cdot1}{1+1}=\dfrac{2}{2}=1\)

ah giúp em bài toán lớp 6 em đăng trên trang của em đc ko ạ?bucminh

\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)

\(=x^2+2x+3\)

9 tháng 12 2018

a) Phân thức M xác định khi và chỉ khi :

+) \(2x-2\ne0\Leftrightarrow x\ne1\)

+) \(2x+2\ne0\Leftrightarrow x\ne-1\)

+) \(1-\frac{x-3}{x+1}\ne0\)

\(\Leftrightarrow x-3\ne x+1\)

\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)

Vậy \(x\ne\left\{1;-1\right\}\)

b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)

\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)

\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)

\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)

\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)

\(M=\frac{1}{x-1}\)

9 tháng 12 2018

\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)

a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)

b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)

18 tháng 9 2021

\(B\left(x\right)=\left(x+2\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{5}{2}\end{matrix}\right.\)

18 tháng 9 2021

\(B\left(x\right)=\left(x+2\right)\left(2x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2=0\\2x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{5}{2}\end{matrix}\right.\)

`@` `\text {Ans}`

`\downarrow`

\(B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1\)

`= x^2 + 2x + 1 - 2(2x^2 + x - 1) + 4x^2 - 4x + 1`

`= 5x^2 - 2x + 2 - 4x^2 - 2x + 2`

`= x^2 - 4x + 4`

8 tháng 8 2023

\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)

\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(x+1-2x+1\right)^2\)

\(=\left(2-x\right)^2\)

16 tháng 8 2023

\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)

\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(x+1-2x+1\right)^2=\left(2-x\right)^2\)