K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2021

\(a^2x^2-a^2y^2-b^2x^2+b^2y^2\)

\(=\left(a^2x^2-a^2y^2\right)-\left(b^2x^2-b^2y^2\right)\)

\(=a^2.\left(x^2-y^2\right)-b^2.\left(x^2-y^2\right)\)

\(=a^2.\left(x-y\right).\left(x+y\right)-b^2.\left(x-y\right).\left(x+y\right)\)

\(=\left(x-y\right).\left(x+y\right).\left(a^2-b^2\right)\)

\(=\left(x-y\right).\left(x+y\right).\left(a-b\right).\left(a+b\right)\)

11 tháng 10 2019

Nhanh lên

11 tháng 10 2019

a) 16x2(x - y)2 - 10y(y - x)3

= 16x2(y - x)2 - 10y(y - x)3

= 2(y - x)2[8x2 - 5y(y - x)]

= 2(y - x)2(8x2 + 5xy - 5y2)

b) a2 -b2 + 4ab - 9 (sai đề)

30 tháng 9 2015

 

a) x3+y3+z3-3xyz

=(x+y)3+z3-3x2y-3xy2-3xyz

=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)

=(x+y+z)(x2+y2+zx+zy+z2-zy)

 

b)a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2a-c2b

=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)

=b.(a2-c2)-ac.(a-c)-b2.(a-c)

=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)

=(a-c)[b.(a+c)-ac-b2]

=(a-c)(ab+bc-ac-b2)

=(a-c)[(ab-ac)+(bc-b2)]

=(a-c)[a.(b-c)-b.(b-c)]

=(a-c)(b-c)(a-b)

20 tháng 9 2015

a/ (x-a)^4 - (x+a)^4

    =((x-a)^2)^2 - ((x+a)^2)^2

    =(x^2 - 2xa + a^2)^2 - (x^2 +2xa+a^2)^2

    =(x^2-2xa+a^2-x^2-2xa-a^2)(x^2-2xa+a^2+x^2+2xa+a^2)

    =-4xa(2x^2+2a^2)

 

b/ x^4 –y^2(2x-y)^2

    =(x^2)^2-(y(2x-y)^2

    =(x^2)^2-(2xy-y^2)^2

    =(x^2-2xy+y^2)(x^2+2xy+y^2)

    =(x-y)^2 (x+y)^2

 

c/(xy+4)^2- 4(x+y)^2

    =(xy+4)^2- (2x+2y)^2

    =(xy+y-2x-2y)(xy+y+2x+2y)

    =(xy-y+2x)(xy+3y+2x)

20 tháng 9 2015

sử dụng tam giác  Pascal

15 tháng 7 2021
Kết bạn nha
15 tháng 7 2021

\(a,y^4-14y^2+49\)

\(\left(y^2-7\right)^2\)

\(b,x^2-2\)

\(x^2-\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)

\(c,y^2-13\)

\(y^2-\left(\sqrt{13}\right)^2=\left(y-\sqrt{13}\right)\left(y+\sqrt{13}\right)\)

\(d,-4x^2+9y^2\)

\(\left(3y\right)^2-\left(2x\right)^2\)

\(\left(3y-2x\right)\left(3y+2x\right)\)

20 tháng 10 2021

a) \(x^3+2x^2y+xy^2-9x\)

\(=x\left(x+y\right)^2-9x\)

\(=x\left(x+y-3\right)\left(x+y+3\right)\)

b) \(2x-2y-x^2+2xy-y^2=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)

c) \(x^4-2x^2=x^2\left(x^2-2\right)\)

22 tháng 9 2019

a) \(43x^3y^3-32x^2y^2\)

\(=x^2y^2\left(43xy-32\right)\)

b) \(ax-bx+ab-x^2\)

\(=\left(ax+ab\right)-\left(bx+x^2\right)\)

\(=a\left(b+x\right)-x\left(b+x\right)\)

\(=\left(a-x\right)\left(b+x\right)\)

c) \(12a^2b-18ab^2-30b^2\)

\(=6b\left(2a^2-3ab-5b\right)\)

d) \(27a^2\left(b-1\right)-9a^3\left(1-b\right)\)

\(=27a^2\left(b-1\right)+9a^3\left(b-1\right)\)

\(=\left(27a^2+9a^3\right)\left(b-1\right)\)

\(=9a^2\left(b-1\right)\left(a+3\right)\)

24 tháng 4 2019

b) Dùng phương pháp đặt ẩn phụ:

Đặt y - x = a; z - y = b suy ra \(a+b=y-x+z-y=z-x\)

\(x^2y^2a+y^2z^2b-z^2x^2\left(a+b\right)=\left(x^2y^2a-z^2x^2a\right)+\left(y^2z^2b-z^2x^2b\right)\)

\(=x^2a\left(y^2-z^2\right)+z^2b\left(y^2-x^2\right)=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(x+y\right)\)

\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)-z^2\left(y-z\right)\left(y-x\right)\left(x+y\right)\)

\(=\left(y-x\right)\left(y-z\right)\left[x^2\left(y+z\right)-z^2\left(x+y\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left(x^2y+x^2z-z^2x-z^2y\right)\)

\(=\left(y-x\right)\left(y-z\right)\left[y\left(x^2-z^2\right)+xz\left(x-z\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left[y\left(x-z\right)\left(x+z\right)+xz\left(x-z\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+zx\right)\)

8 tháng 10 2018

\(a)\)\(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)

\(=\)\(\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\)\(\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\)\(\left(x^2-2xy+y^2-5+4\right)\left(x^2+2xy+y^2-5-4\right)\)

\(=\)\(\left[\left(x-y\right)^2-1\right].\left[\left(x+y\right)^2-9\right]\)

\(=\)\(\left(x-y-1\right)\left(x-y+1\right)\left(x+y-9\right)\left(x+y+9\right)\)

Chúc bạn học tốt ~ 

25 tháng 9 2019

\(\left(x^2-x^2\right)^3\)x hayz

25 tháng 9 2019

Sửa đề\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3\)

Đặt \(\hept{\begin{cases}x^2+y^2=a\\z^2-x^2=b\\-y^2-z^2=c\end{cases}}\)

Nhận thấy \(a+b+c=x^2+y^2+z^2-x^2-y^2-z^2=0\)

Mà \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)( bạn tự chứng minh cái này nha )

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Thay \(\hept{\begin{cases}a=x^2+y^2\\b=z^2-x^2\\c=-y^2-z^2\end{cases}}\) vào (1) ta được :

\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3=3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(-y^2-z^2\right)\)

31 tháng 7 2018

b) (1 + 2x)(1- 2x) - x(x+2)(x-2)

= (1- 4x2) - x(x2 - 4)

= 1 - 4x2- x3- 4x

= (1 - x3) + (4x - 4x2)

= (1- x) (1 + x + x2) + 4x(1 -x)

= (1-x)(1+5x + x2)