K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

25 tháng 5 2020

a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )

                      =  2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y 

                      =  ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )

                      =   0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0

                      =  xy2 - 2x

     Vậy A = M + N = xy2 - 2x

    B = N - M =  2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )

                    =    2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y 

                    =  ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + (  2y + 2y )

                    =  ( 2 + 1 )xy2 + ( -2 - 2 )x2y  + ( - 5 - 3 )x  + (  2 + 2 )y 

                    =  3xy2 - 4x2y  - 8x  + 4y 

 Vậy B = 3xy2 - 4x2y  - 8x  + 4y 

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

13 tháng 3 2018

trả lời hộ với mai thi rồi

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

2 tháng 1 2018

Ta có \(2x^2-2xy=5x-y-19\Leftrightarrow2x^2-5x+19=2xy-y\)

<=>\(\frac{2x^2-5x+19}{2x-1}=y\)

Mà y là số nguyên =>\(\frac{2x^2-5x+19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)

\(\Leftrightarrow2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2x-1}\in Z\Rightarrow17⋮2x-1\)

đến đây lấp bảng nhé !

^_^

2 tháng 1 2018

Thanks ban nha

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks