K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(3x-2y\right)^2-3\)

\(=\left(3x-2y-\sqrt{3}\right)\left(3x-2y+\sqrt{3}\right)\) (Bước này chắc không cần)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

\(=\left(x+2-\sqrt{3}\right)\left(x+2+\sqrt{3}\right)\)

(Bước này chắc không cần)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=\left(\dfrac{1}{2}x\right)^2+x+1-1\)

\(=\left(\dfrac{1}{2}x+1\right)^2-1\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=4a^2+6a^2+4b^2+b^2+12ab+4a-6b+15\)

\(=\left(6a^2+b^2+12ab\right)+4a+4a^2-6b+4b^2+15\)

\(=\left(6a+b\right)^2+4a\left(1+a\right)-2b\left(3+2b\right)+15\)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...

5 tháng 10 2020

a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)

\(\Leftrightarrow2x=-40\)

\(\Rightarrow x=-20\)

b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x^3+4x=15\)

\(\Leftrightarrow4x=-12\)

\(\Rightarrow x=-3\)

c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)

\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)

\(\Leftrightarrow-14x=14\)

\(\Rightarrow x=-1\)

5 tháng 10 2020

d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)

\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)

\(\Leftrightarrow17x=-34\)

\(\Rightarrow x=-2\)

e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

\(\Leftrightarrow24x=24\)

\(\Rightarrow x=1\)

24 tháng 5 2018

cảm ơn bạn nhiều nhé !!!!

5 tháng 10 2020

a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3

b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81

c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3

d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2

e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2

= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )

= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6

= -3x2 + 39x + 6

= -3( x2 - 13x - 2 )

f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3

= x3 + y3 + x3 - y3 - 2x3

= 0

g) x2 + 2x( y + 1 ) + y2 + 2y + 1

= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )

= x2 + 2x( y + 1 ) + ( y + 1 )2

= ( x + y + 1 )2

= [ ( x + y ) + 1 ]2

= ( x + y )2 + 2( x + y ) + 1

= x2 + 2xy + y2 + 2x + 2y + 1

1: \(=\left(3x-2y\right)^2-3\)

2: \(=x^2+4x+4-3=\left(x+2\right)^2-3\)

3: \(=x^2-4x+4+3=\left(x-2\right)^2+3\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6: \(=\dfrac{1}{4}x^2+x+1-1=\left(\dfrac{1}{2}x+1\right)^2-1\)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...