Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{64}+4\sqrt{4}+2016=\sqrt{8^2}+4.\sqrt{2^2}+2016=8+4.2+2016=2032\)
b) \(B=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(=\sqrt{2}\left(4-9+32-20\right)=7\sqrt{2}\)
a,
\(A=\sqrt{8}^2+2.\sqrt{8}.\sqrt{2}+\sqrt{2}^2+2014\)
\(=\left(\sqrt{8}+\sqrt{2}\right)^2+2014\)
1,=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{12}+4}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
=\(\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
=\(\sqrt{4+2\sqrt{3}}\)
=\(\sqrt{3}+1\)
1,
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}\\ =2\sqrt{5}-\sqrt{25\cdot5}-\sqrt{16\cdot5}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}\\ =-7\sqrt{5}\)
2,
\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\\ =3\sqrt{2}-\sqrt{4\cdot2}+\sqrt{25\cdot2}-4\sqrt{16\cdot2}\\ =3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}\\=-10\sqrt{2}\)
3,
\(\sqrt{18}-3\sqrt{80}-2\sqrt{50}+2\sqrt{45}\\ =\sqrt{9\cdot2}-3\sqrt{16\cdot5}-2\sqrt{25\cdot2}+2\sqrt{9\cdot5}\\ =3\sqrt{2}-12\sqrt{5}-10\sqrt{2}+6\sqrt{5}\\ =-7\sqrt{2}-6\sqrt{5}\)
4,
\(\sqrt{27}-2\sqrt{3}+2\sqrt{48}-3\sqrt{75}\\ =\sqrt{9\cdot3}-2\sqrt{3}+2\sqrt{16\cdot3}-3\sqrt{25\cdot2}\\ =3\sqrt{3}-2\sqrt{3}+8\sqrt{3}-15\sqrt{3}\\ =-6\sqrt{3}\)
5,
\(3\sqrt{2}-4\sqrt{18}+\sqrt{32}-\sqrt{50}\\ =3\sqrt{2}-4\sqrt{9\cdot2}+\sqrt{16\cdot2}-\sqrt{25\cdot2}\\ =3\sqrt{2}-12\sqrt{2}+4\sqrt{2}-5\sqrt{2}\\ =-10\sqrt{2}\)
6,
\(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\\ =2\sqrt{3}-\sqrt{25\cdot3}+2\sqrt{4\cdot3}-\sqrt{49\cdot3}\\ =2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\\ =-6\sqrt{3}\)
7,
\(\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}\\ =\sqrt{4\cdot5}-2\sqrt{9\cdot5}-3\sqrt{16\cdot5}+\sqrt{25\cdot5}\\ =2\sqrt{5}-6\sqrt{5}-12\sqrt{5}+5\sqrt{5}\\ =-11\sqrt{5}\)
8,
\(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\\ =6\sqrt{4\cdot3}-\sqrt{4\cdot5}-2\sqrt{9\cdot3}+\sqrt{25\cdot5}\\ =12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}\\ =6\sqrt{3}+3\sqrt{5}\\ =3\left(2\sqrt{3}+\sqrt{5}\right)\)
9,
\(4\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\\ =4\sqrt{4\cdot6}-2\sqrt{9\cdot6}+3\sqrt{6}-\sqrt{25\cdot6}\\ =8\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}=0\)
10,
\(2\sqrt{18}-3\sqrt{80}-5\sqrt{147}+5\sqrt{245}-3\sqrt{98}\\ =2\sqrt{9\cdot2}-3\sqrt{16\cdot5}-5\sqrt{49\cdot3}+5\sqrt{49\cdot5}-3\sqrt{49\cdot2}\\ =6\sqrt{2}-12\sqrt{5}-35\sqrt{3}+35\sqrt{5}-21\sqrt{2}\\ =-15\sqrt{2}-35\sqrt{3}+23\sqrt{5}\)
a) \(2\sqrt{50}-3\sqrt{32}-\sqrt{162}+5\sqrt{98}\)
=\(2.5\sqrt{2}-3.4\sqrt{2}-9\sqrt{2}+5.7\sqrt{2}\)
= \(10\sqrt{2}-12\sqrt{2}-9\sqrt{2}+35\sqrt{2}\)
= \(24\sqrt{2}\)
b) \(\sqrt{8+2\sqrt{7}}+\sqrt{11-4\sqrt{7}}\)
= \(\sqrt{7+2\sqrt{7}+1}+\sqrt{7-4\sqrt{7}+4}\)
= \(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-2\right)^2}\)
= \(\sqrt{7}+1+\sqrt{7}-2\)
= \(2\sqrt{7}-1\)
c) \(\dfrac{10}{\sqrt{5}}+\dfrac{8}{3+\sqrt{5}}-\dfrac{\sqrt{18}-3\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
= \(2\sqrt{5}+6-2\sqrt{5}-3\)
= 3
a, Ta có : \(A=\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
\(=\sqrt{16}-\sqrt{64}+3\sqrt{36}=4-8+3.6=14\)
b, Ta có : \(B=\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
\(=\sqrt{4}-\sqrt{2\left(3-\sqrt{5}\right)}=2-\sqrt{6-2\sqrt{5}}\)
\(=2-\sqrt{5-2\sqrt{5}+1}=2-\left(\sqrt{5}-1\right)=2-\sqrt{5}+1=3-\sqrt{5}\)
c, Ta có : \(C=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
d, Ta có : \(D=\sqrt{\sqrt{3}-\sqrt{2}}-\sqrt{\sqrt{3}+\sqrt{2}}\)
\(=-\sqrt{\left(\sqrt{\sqrt{3}-\sqrt{2}}-\sqrt{\sqrt{3}+\sqrt{2}}\right)^2}\)
\(=-\sqrt{\sqrt{3}-\sqrt{2}-2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\sqrt{3}+\sqrt{2}}\)
\(=-\sqrt{2\sqrt{3}-2}=-\sqrt{2\left(\sqrt{3}-1\right)}\)
Vậy ...
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5
\(a.A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
⇔ \(A^2=\) \(\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)
⇔ \(A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)⇔ \(A^2=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
⇔ \(A^2=8+2\text{|}\sqrt{5}-1\text{|}\)
⇔ \(A^2=6+2\sqrt{5}=5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)
⇔ \(\text{ |}A\text{ |}=\text{ |}\sqrt{5}+1\text{ |}\)
⇔ \(A=\sqrt{5}+1\)
\(7\sqrt{2}\)
\(A=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}\)
\(A=2\sqrt{4.2}-3\sqrt{9.2}+4\sqrt{64.2}-5\sqrt{16.2}\)
\(A=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(A=7\sqrt{2}\)