K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=2/n-1 thuộc Z => n-1 thuộc{-2;-1;1;2}

=>n thuộc {-1;0;2;3}

B=n+4/n+1=1+3/n+1 thuộc Z

=>3/n+1 thuộc Z

=>n+1 thuộc {-3;-1;1;3}

=>n thuộc {-4;-2;0;2}

=>n=0;2

b,D=n+5/18 là số tự nhiên

=>n+5 chia hết cho 18

=>n+5 chia hết cho 3

=>n+6 không chia hết cho 3

=>n+6 không chia hết cho 15

=>n+6/15 không phải số tự nhiên(trái giả thuyết)

vậy a=rỗng

22 tháng 6 2015

Để A thuộc Z => 2/ n-1 thộc Z => n - 1 thuộc ước của 2  ( + - 1  ; +-2)

(+) n - 1 = 1 =>n = 2

(+) n - 1 = -1 => n = 0

(+) n - 1 = 2 => n = 3

(+) n - 1 = -2 => n = -1

B = n+4/n+1 = n+1+3/n+1 = 1 + 3/n+1

ĐỂ B thuộc Z => n + 1 thuộc ước của 3 ( +-1 ; +-3)

(+) n + 1 = 1 => n = 0

(+) n + 1 = -1 => n = -2

(+) n + 1 = -3 => n = -4

(+) n + 1 = 3 => n = 2

Vậy n = 0 hoặc n = 2    thì A,B đồng thời thuộc tập hợp số nguyên.

b,tương tự nha

11 tháng 10 2015

A={12; 23; 49; 60}                      

11 tháng 10 2015

A = { 12;23;49;60 }

2 tháng 5 2018

sai rồi bạn ơi

5 tháng 2 2017

\(\frac{a}{b}=\frac{14}{22}=\frac{7}{11}\Rightarrow\frac{a}{7}=\frac{b}{11}=\frac{a+b}{7+11}=\frac{M}{18}\)

\(\frac{c}{d}=\frac{11}{13}\Rightarrow\frac{c}{11}=\frac{d}{13}=\frac{c+d}{11+13}=\frac{M}{24}\)

\(\frac{e}{f}=\frac{13}{17}\Rightarrow\frac{e}{13}=\frac{f}{17}=\frac{e+f}{13+17}=\frac{M}{30}\)

Mà M là số tự nhiên nhỏ nhất có 4 chữa số => M thuộc ƯC(18;24;30) 

ƯC(18;24;30) = { 0;360;720;1080;....}

Vậy M = 1080

6 tháng 2 2017

Phải là BCNN chứ bạn nhưng mà cảm ơn

MH
19 tháng 8

Ta xét biểu thức:

\(A = \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \hdots + \frac{n}{5^{n + 1}} \text{v}ớ\text{i}\&\text{nbsp}; n \in \mathbb{N}\)


Bước 1: Xét tổng vô hạn tương ứng

Ta xét tổng vô hạn:

\(S = \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}}\)

Đặt \(S = \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}}\), ta muốn tính giá trị này để ước lượng \(A\), vì rõ ràng:

\(A = \sum_{k = 1}^{n} \frac{k}{5^{k + 1}} < \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}} = S\)


Bước 2: Tính tổng vô hạn \(S\)

Ta đặt:

\(S = \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}} = \frac{1}{5} \sum_{k = 1}^{\infty} \frac{k}{5^{k}}\)

Giờ xét:

\(T = \sum_{k = 1}^{\infty} \frac{k}{5^{k}}\)

Tổng này là tổng lũy thừa có công thức:

\(\sum_{k = 1}^{\infty} k x^{k} = \frac{x}{\left(\right. 1 - x \left.\right)^{2}} , \text{v}ớ\text{i}\&\text{nbsp}; \mid x \mid < 1\)

Thay \(x = \frac{1}{5}\), ta có:

\(T = \sum_{k = 1}^{\infty} \frac{k}{5^{k}} = \frac{\frac{1}{5}}{\left(\left(\right. 1 - \frac{1}{5} \left.\right)\right)^{2}} = \frac{\frac{1}{5}}{\left(\left(\right. \frac{4}{5} \left.\right)\right)^{2}} = \frac{1 / 5}{16 / 25} = \frac{1}{5} \cdot \frac{25}{16} = \frac{5}{16}\)

Do đó:

\(S = \frac{1}{5} \cdot \frac{5}{16} = \frac{1}{16}\)


Bước 3: So sánh với A

Vì:

\(A = \sum_{k = 1}^{n} \frac{k}{5^{k + 1}} < \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}} = \frac{1}{16}\)

Nên ta có:

\(\boxed{A < \frac{1}{16}}\)


Kết luận: Với mọi \(n \in \mathbb{N}\), ta có:

\(A = \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \hdots + \frac{n}{5^{n + 1}} < \frac{1}{16}\)

19 tháng 8

Để chứng minh rằng \(A < \frac{1}{16}\), ta cần phân tích và tính giá trị của \(A\), nơi:

\(A = \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \hdots + \frac{n}{5^{n}} + 1\)

1. Biểu diễn \(A\) dưới dạng tổng

Biểu thức của \(A\) có thể viết lại như sau:

\(A = \sum_{k = 2}^{\infty} \frac{k - 1}{5^{k}} + 1\)

Chúng ta sẽ tách phần tổng lại thành 2 phần:

\(A = 1 + \sum_{k = 2}^{\infty} \frac{k}{5^{k}}\)

2. Tính tổng \(\sum_{k = 2}^{\infty} \frac{k}{5^{k}}\)

Để tính tổng này, ta sử dụng một phương pháp dựa trên sự phát triển của chuỗi số học trong chuỗi lũy thừa.

Đầu tiên, xét chuỗi cơ bản sau:

\(S = \sum_{k = 1}^{\infty} x^{k} = \frac{x}{1 - x} \text{v}ớ\text{i}\&\text{nbsp}; \mid x \mid < 1\)

Bước 1: Tính tổng của chuỗi số \(\sum_{k = 2}^{\infty} \frac{1}{5^{k}}\)

Áp dụng công thức chuỗi số học cho \(x = \frac{1}{5}\):

\(\sum_{k = 1}^{\infty} \frac{1}{5^{k}} = \frac{\frac{1}{5}}{1 - \frac{1}{5}} = \frac{1}{4}\)

Bước 2: Tính tổng của chuỗi số \(\sum_{k = 2}^{\infty} \frac{k}{5^{k}}\)

Sử dụng công thức chuỗi tổng quát và tính tổng khi có một hệ số \(k\) trong tử số:

\(\sum_{k = 2}^{\infty} \frac{k}{5^{k}} = \frac{1}{4}\)

13 tháng 3 2016

a) 36

b) x=3 y=2 

c) chịu

13 tháng 3 2016

ai trả lời nhanh nhất mình sẽ k cho càng nhanh cành tốt mình đang cần gấp

Câu 1: 

a: N;Z;Q

b: Q

c: Q

d: Q

e: N;Z;Q

Câu 2: Cả ba 

1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5 

\(\Rightarrow\)c phải là 5 

Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b 

\(\Rightarrow\)A có thể là 1955 hoặc là 9155

11 tháng 8 2016

cảm ơn nhé