K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

\(2A=2^1+2^2+...+2^{2009}\)

nên \(A=2^{2009}-1\)

=>B-A=1

12 tháng 12 2019

a) Ta có : A=2+22+23+...+210

                  =(2+22)+(23+24)+...+(29+210)

                 =2(1+2)+23(1+2)+...+29(1+2)

                =2.3+23.3+...+29.3

Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3

hay A\(⋮\)3

Vậy A\(⋮\)3.

12 tháng 12 2019

b) Ta có : A=22+24+26+...+220

                  =(22+24)+(26+27)+...+(218+220)

                  =22(1+22)+26(1+22)+...+218(1+22)

                 =22.5+26.5+...+218.5

Vì 5\(⋮\)5 nên 22.5+26.5+...+218.5\(⋮\)5

hay A\(⋮\)5

Vậy A\(⋮\)5.

28 tháng 9 2017

\(A=4+2^2+2^3+..+2^{20}\)

\(\Rightarrow2A=8+2^3+2^4+...+2^{21}\)

\(\Rightarrow2A-A=\left(2^3+2^3+....+2^{21}\right)-\left(2+2+2^2+...+2^{20}\right)\)

\(\Rightarrow A=\left(2^3+2^{21}\right)-\left(2+2+2^2\right)\)

\(\Rightarrow A=2^{21}+8-8\)

\(\Rightarrow A=2^{21}\)

28 tháng 9 2017

=2162688 nha

15 tháng 1 2020

Ta có : A=2+22+23+...+22010

=(2+22)+(23+24)+...+(22009+22010)

=2(1+2)+23(1+2)+...+22009(1+2)

=2.3+23.3+...+22009.3 chia hết cho 3  (1)

Ta có : A=2+22+23+...+22010

=(2+22+23)+(24+25+26)+...+(22008+22009+22010)

=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)

=2.7+24.7+...+22008.7 chia hết cho 7  (2)

Từ (1) và (2)

=> A chia hết cho cả 3 và 7

Vậy A chia hết cho cả 3 và 7.

15 tháng 1 2020

A=\(2^1\)+\(2^2\)+\(2^3\)+...+\(2^{2010}\)

=(\(2^1\)+\(2^2\)+\(2^3\))+...+(\(2^{2008}\) +\(2^{2009}\)+\(2^{2010}\))

=2(1+2+\(2^2\))+\(2^4\)(1+2+\(2^2\))+...+\(2^{2008}\)(1+2+\(2^2\))

=2.7+\(2^4\).7+...+\(2^{2008}\).7

=7(2+\(2^4\)+...+\(2^{2008}\)) chia hết cho 7 (đ.p.c.m)

+)A=\(2^1\)+\(2^2\)+\(2^3\)+...+\(2^{2010}\)

=(\(2^1\)+\(2^2\))+...+(\(2^{2009}+2^{2010}\))=2(1+2)+\(2^3\)(1+2)+...+\(2^{2009}\)(1+2)=3(2+\(2^3+2^{2009}\)) chia hết cho 3 (đ.p.c.m)

21 tháng 11 2022

\(A=2^2\left(1+2^2\right)+2^6\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)

=5(2^2+2^6+...+2^18) chia hết cho 5

18 tháng 11 2021

S = ( 21 + 22 ) + ( 23 + 24 ) + ..... + ( 259 + 260 )

S = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + .......... + 259 x ( 1 + 2 )

S = 2 x 3 + 23 x 3 + ..... + 259 x 3

S = ( 2 + 23 + ........ + 259 ) x 3

mà 3 \(⋮\)3 => S \(⋮\) 3

18 tháng 11 2021

Ta có :

S= 2^1+2^2+2^3+...+2^60

S= (2^1+2^2)+(2^3+2^4)+...+(2^59+2^60)

s=2(1+2)+2^3(1+2)+...+2^59(1+1)

S= 3(2+2^3+...+2^59)

=> đpcm

19 tháng 12 2019

ko bt

và đọc nội quy chưa

19 tháng 12 2019

a) Ta có: \(A=2+2^2+2^3+2^4+...+2^{20}\)

\(2A=2^2+2^3+2^4+2^5+...+2^{21}\)

\(2A-A=2^{21}-2\)

Hay \(A=2^{21}-2\)