K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 2 2020

Bạn xem lại đề, có gì đó không ổn.

Ngoài ra, ko thấy điều kiện gì cho a;b;c cả, nghĩa là a;b;c bất kì?

\(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\)

\(\ge2\left(a^2b+b^2c+c^2a\right)\ge2.3abc=6abc\)

Dấu \("="\) xảy ra khi \(a=b=c\)

8 tháng 2 2020

Hóng đề bất mới của a.

Y
16 tháng 4 2019

+ \(c^2+1\ge2c\) \(\forall c\)

\(\Rightarrow a^2\left(c^2+1\right)\ge2a^2c\)

Dấu "=" xảy ra \(\Leftrightarrow c=1\)

+ Tương tự ta có :

\(c^2\left(b^2+1\right)\ge2bc^2\). Dấu "=" xảy ra \(\Leftrightarrow b=1\)

\(b^2\left(a^2+1\right)\ge2ab^2\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)

do đó : \(a^2\left(c^2+1\right)+c^2\left(b^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\left(a^2c+bc^2+ab^2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Áp dụng bđt AM-GM cho 3 số dương \(a^2c;bc^2;ab^2\) ta có :

\(a^2c+bc^2+ab^2\ge3\sqrt[3]{a^2c\cdot bc^2\cdot ab^2}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a^2c=bc^2=ab^2\Leftrightarrow a=b=c\)

Do đó : \(a^2\left(c^2+1\right)+c^2\left(c^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\cdot3abc=6abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Nghĩ đơn giản ra

VT = a2 + c2a2 + c2 + b2c2 + b2 + a2b2\(6\sqrt[6]{a^6b^6c^6}\) = 6abc

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

NV
30 tháng 6 2020

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

NV
30 tháng 6 2020

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

3 tháng 10 2019

https://hoc24.vn/id/2782086

3 tháng 10 2019

@Nguyễn Việt Lâm

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Câu 2:

Áp dụng BĐT Bunhiacopxky:

\(\left(a^2+\frac{1}{2}+\frac{1}{2}\right)[1+2+2(b+c)^2]\geq (a+1+b+c)^2\)

\(\Rightarrow \frac{5}{16}(a^2+1)[3+2(b+c)^2]\geq \frac{5}{16}(a+b+c+1)^2\)

Để hoàn thành bài toán ta cần chứng minh:

\((a^2+1)(b^2+1)(c^2+1)\geq \frac{5}{16}(a^2+1)[3+2(b+c)^2]\)

\(\Leftrightarrow (b^2+1)(c^2+1)\geq \frac{5}{16}[3+2(b+c)^2]\)

\(\Leftrightarrow b^2c^2+\frac{3}{8}(b^2+c^2)+\frac{1}{16}-\frac{5}{4}bc\geq 0\)

\(\Leftrightarrow (bc-\frac{1}{4})^2+\frac{3}{8}(b-c)^2\geq 0\)

(Luôn đúng)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

 

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Câu 1:

Áp dụng BĐT Bunhiacopxky:

\((a^2+1+2)\left[1+1+\frac{(b+c)^2}{2}\right]\geq (a+1+b+c)^2\)

\(\Rightarrow 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\geq 4(a+b+c+1)^2\)

Để hoàn thành bài toán ta cần chứng minh:

\((a^2+3)(b^2+3)(c^2+3)\geq 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\)

\(\Leftrightarrow (b^2+3)(c^2+3)\geq 8+2(b+c)^2\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1-4bc\geq 0\)

\(\Leftrightarrow (bc-1)^2+(b-c)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

30 tháng 11 2017

sky oi say oh yeah