Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rằng : 3a-7b+5c=30
- Mà theo phương phap loại trừ thì đáp án A,B,D đều có a=42 nên ta loại C.
- Ta thay a=42 vào a/3 \(\Rightarrow\)được \(\frac{42}{3}\)=14.
- Mà a/3=b/2\(\Rightarrow\)Ta loại câu A và D (vì số b=14 nên a/3\(\ne\)b/2).
- Đáp án đúng là B. Nếu muốn xét xem đúng hay không ta chỉ cần thay số a,b,c vào 3a-7b+5c, nếu =30 là đúng.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
a) a:b:c:d=2:3:4:5
<=>a/2=b/3=c/4=d/5=a+b+c+d/2+3+4+5=-42/14=-3
a/2=-3<=>a=-6
b/3=-3<=>b=-9
c/4=-3<=>c=-12
d/5=-3<=>d=-15
b)a/b=7/20<=>a/7=b/20
b/c=5/8 <=>b/5=c/8<=>b/20=c/32
<=>a/7=b/20=c/32=2a/14=5b/100=2c/64=2a+5b-2c/14+100+64=100/178=50/89
minh ko chac dung dau nha
a) Theo đề, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c =1,5
Theo t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
=>a=0,3
b=0,45
c=0,75
a) Vì a,b,c tỉ lệ với 2,3,5
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
\(\frac{a}{2}=\frac{3}{20}=>a=\frac{3}{20}.2=\frac{3}{10}\)
\(\frac{b}{3}=\frac{3}{20}=>b=\frac{3}{20}.3=\frac{9}{20}\)
\(\frac{c}{5}=\frac{3}{20}=>c=\frac{3}{20}.5=\frac{3}{4}\)
b)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\frac{a}{2}=5=>a=5.2=10\)
\(\frac{b}{3}=5=>b=5.3=15\)
\(\frac{c}{4}=5=>c=5.4=20\)
c) \(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}\)
\(\frac{a}{10}=\frac{b}{15},\frac{b}{15}=\frac{c}{12}\)
\(=>\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{-39}{13}=-3\)
\(\frac{a}{10}=-3=>-3.10=-30\)
\(\frac{b}{15}=-3=>-3.15=-45\)
\(\frac{c}{12}=-3=>-3.12=-36\)
b: Theo đề,ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{5}\\\dfrac{b}{1}=\dfrac{c}{2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}=\dfrac{a+b+c}{3+5+10}=\dfrac{180}{18}=10\)
Do đó: a=30; b=50; c=100
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180}{15}=12\)
Do đó: a=36; b=60; c=84
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
`a/2 =b/3=c/5=(a+b+c)/(2+3+5)=20/10=2`
`=>a/2=2=>a=2.2=4`
`=> b/3=2=>b=2.3=6`
`=>c/5=2=>c=2.5=10`