K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

bài này hả chịu thui

bik làm sao dc 

để nhớ lại đã

25 tháng 9 2016

bn ơi bn viết

chữ nhỏ quá đó 

bn ấn vào chữ x2

à bn mình nhìn rõ

nhưng có chữ 

ko đọc được

4 tháng 9 2016

Ta có a3_ a2b +ab2 _6b3=0 

<=> (a3 - 2ab) + (a2 b - 2ab2) + (3ab2 - 6b3) = 0

<=> (a - 2b)(a2 + ab + 3b2) = 0

Vì a >b>0 nên (a2 + ab + 3b2) >0

=> a - 2b = 0 <=> a = 2b

Thế vào B=a4- 4b4 /b-4a4  = \(\frac{-4}{21}\)

1 tháng 1 2019

Chia hai vế của giải thiết cho \(b^3\),ta có:

\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0\) Đặt \(\frac{a}{b}=v\) (v nguyên)

Suy ra \(v^3-v^2+v-6=0\) (1)

Giải (1),tìm được v = 2 tức là \(\frac{a}{b}=2\)

Thay vào B,ta có: \(B=\frac{\frac{a^{\text{4 }}}{b^4}.b^4-4b^4}{b^4-4.\frac{a^4}{b^4}.b^4}=\frac{b^4\left(2^4-4\right)}{b^4\left(1-4.2^4\right)}\)\(=\frac{12}{-63}=-\frac{4}{21}\)

3 tháng 6 2016

Ta có: (a2+b2)3=(a3+b3)2

=>(a2)3+3a2b2(a2+b2)+(b2)3=(a3)2+2a3b3+(a3)2

=>a6+b6+3a2b2(a2+b2)=a6+b6+2a3b3

=>3a2b2(a2+b2)=2a3b3

=>3.(a2+b2)=2a3b3:a2:b2

=>3.(a2+b2)=2ab

=>\(\frac{a^2+b^2}{ab}=\frac{2}{3}\)

=>\(\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{2}{3}\)

=>\(\frac{a}{b}+\frac{b}{a}=\frac{2}{3}\)

=>\(C=\frac{2}{3}\)

Vậy \(C=\frac{2}{3}\)

8 tháng 3 2015

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\Leftrightarrow4a^2+4b^2+4c^2+3\ge-4a-4b-4c\)

\(\Leftrightarrow4a^2+4a+1+4b^2+4b+1+4c^2+4c+1\ge0\)

\(\Leftrightarrow\left(2a+1\right)^2+\left(2b+1\right)^2+\left(2c+1\right)^2\ge0\) (Đúng với mọi a, b, c)

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.

18 tháng 11 2020

Theo đánh giá của bđt AM-GM ta có  \(a^2+1\ge2\sqrt{a^2.1}=2a\Rightarrow a^2+2b+3\ge2a+2b+2\)

Suy ra \(\frac{a}{a^2+2b+3}\le\frac{a}{2a+2b+1}=\frac{a}{2\left(a+b+1\right)}=\frac{1}{2}.\frac{a}{a+b+1}\)

Chứng mình tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}.\frac{a}{a+b+1}+\frac{1}{2}.\frac{b}{b+c+1}+\frac{1}{2}.\frac{c}{c+a+1}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)=\frac{1}{2}\left(3-\frac{b+1}{a+b+1}-\frac{c+1}{b+c+1}-\frac{a+1}{c+a+1}\right)\)

\(=\frac{1}{2}\left[3-\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}-\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}-\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\right]\)

\(\le\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\right]\)

\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{ab+b^2+b+a+b+1+cb+c^2+c+b+c+1+ca+a^2+a+c+a+1}\right]\)

\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\right]\)

\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+6\left(a+b+c\right)+9}\right]\)

\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c\right)^2+2.3.\left(a+b+c\right)+3^2}\right]=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}\right]\)

\(=\frac{1}{2}\left[3-2\right]=\frac{1}{2}\)

20 tháng 10 2015

tớ viết lộn chỗ kia \(\left(\sqrt{2}.a.\frac{1}{\sqrt{2}}+b.1\right)^2\) thêm b.1 vô nka triều :D

20 tháng 10 2015

Cậu ta lúc nào cũng câu hỏi tương tự