K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

\(1.VP\)

\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)

\(=a^2+b^2=VT\left(DPCM\right)\)

3 tháng 9 2016

1/  (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2

2/  (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4

1 tháng 2 2017

mk nghĩ là -1

2 tháng 2 2017

Cảm ơn bnhihi

7 tháng 8 2018

a) \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)

\(\Rightarrowđpcm\)

b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)

\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)

c) ​\(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)

\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)

\(VP=VT\Rightarrowđpcm\)

d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)

\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)

\(VP=VT\Rightarrowđpcm\)

\(\left(a+4\right)^2+2\left(a+4\right)\left(6-a\right)+\left(6-a\right)^2\)

\(=\left(a+4+6-a\right)^2=10^2=100\)

Vì đa thức này không phụ thuộc vào giá trị của biến nên với mọi a thì đa thức này LUÔN bằng 100

=>Khi a=1982 thì đa thức này bằng 100

23 tháng 12 2016

mẫu thức thứ 2 sai nhé

A=1/a^2-5a+6+1/a^2-7a+12+1/a^2-9a+20

=1/a^2-3a-2a+6+1/a^2-4a-3a+12+1/a^2-5a-4a+20

=1/a(a-3)-2(a-3)+1/a(a-4)-3(a-4)+1/a(a-5)-4(a-5)

=1/(a-2)(a-3)+1/(a-3)(a-4)+1/(a-5)(a-4)

tổng quát: 1/(x-1)x=1/(x-1)-1/x

A=-1/(a-2)+1/(a-3)-1/(a-3)+1/(a-4)-1/(a-4)+1/(a-5)=-1/(a-2)+1/(a-5)=1/(a-5)-1/(a-2)