Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>\(4\cdot3^x\cdot\dfrac{1}{3}+2\cdot3^x\cdot9=4\cdot3^6+2\cdot3^9\)
=>3^x(4*1/3+2*9)=3^6(4+2*3^3)
=>3^x*58/3=3^6*58
=>3^x/3^6=3
=>x-6=1
=>x=7
b: =>\(2^x\cdot\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)=2^7\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)\)
=>2^x=2^7
=>x=7
giúp mk với
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(5^{-1}\cdot25^x=125\)
Lưu ý: dấu'.' là dấu nhân
Ta có : (x - 1)2 = (x - 1)4
=> (x - 1)4 - (x - 1)2 = 0
=> (x - 1)2.[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0 => x = 1
Nếu x - 1 = 1 => x = 2
Nếu x - 1 = - 1 => x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
b) 5 - 1 . 25x = 125
=> \(\frac{1}{5}.25^x=125\)
=> 25x = 625
=> 25x = 252
=> x = 2
Vậy x = 2
a) \(\left(x-1\right)^2=\left(x-1\right)^4\Leftrightarrow1=\left(x-1\right)^2\)\(\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b) \(5^{-1}.25^x=125\Leftrightarrow5.25^{x-1}=125\Leftrightarrow25^{x-1}=25\)\(\Rightarrow x-1=1\Leftrightarrow x=2\)
\(a,121-\left(115+x\right)=3x-\left(25-9-5x\right)-8\\ 121-115-x=3x-25+9+5x-8\\ 6-x=8x-24\\ 8x+x=-24-6\\ 9x=-30\\ x=-\dfrac{30}{9}=-\dfrac{10}{3}\\ ----\\ b,2^{x+2}.3^{x+1}.5^x=10800\\ \left(2.3.5\right)^x.2^2.3=10800\\ 30^x.12=10800\\ 30^x=\dfrac{10800}{12}=900=30^2\\ Vậy:x=2\)
Vì \(/x-\frac{1}{2}/\ge0\)
\(\Rightarrow2\cdot/x-\frac{1}{2}/\ge0\)
\(\Rightarrow2\cdot/x-\frac{1}{2}/-1\le-1\)
\(\Rightarrow\)GTLN của biểu thức trên là - 1
\(\Rightarrow2\cdot/x-\frac{1}{2}/-1=-1\)
\(\Rightarrow2\cdot/x-\frac{1}{2}/=0\)
\(\Rightarrow/x-\frac{1}{2}/=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
\(4^{x+2}=244+3.4^{x-1}\)
\(\Rightarrow4^{x-1}.4^3=244+3.4^{x-1}\)
\(\Rightarrow4^{x-1}\left(4^3-3\right)=244\)
\(\Rightarrow4^{x-1}.61=244\)
\(\Rightarrow4^{x-1}=4\Rightarrow x-1=1\Rightarrow x=2\)
Chúc bạn học tốt.
A) \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
=> \(2.3.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(6.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(\left(6+4\right).3^{x+1}=10.3^6\)
=> \(10.3^{x+1}=10.3^6\)
=> \(3^{x+1}=3^6\)
=> \(x+1=6\)
=> \(x=6-1\)
=> \(x=5\)
Vậy \(x=5.\)
B) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
=> \(6.8^{x-1}+8^{x-1}.8^2=6.8^{19}+8^{19}.8^2\)
=> \(8^{x-1}.\left(6+8^2\right)=8^{19}.\left(6+8^2\right)\)
=> \(8^{x-1}=8^{19}\)
=> \(x-1=19\)
=> \(x=19+1\)
=> \(x=20\)
Vậy \(x=20.\)
Còn câu c) thì mình đang nghĩ nhé.
Chúc bạn học tốt!
Cảm Ơn bạn nhiều