K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

\(A=2+2^2+2^3+2^4+...+2^{2003}+2^{2004}\)   

\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{2003}\cdot\left(2+1\right)\)   

\(=3\cdot\left(2+2^3+...+2^{2003}\right)⋮3\)

20 tháng 8 2017

Ta có : A = 2 + 2+ 2+ ... + 22003 + 22004 

=> A = (2 + 22) + (23 + 24) + ...... + (22003 + 22004)

=> A = 2.(1 + 2) + 23(1 + 2) + ..... + 22003 (1 + 2)

=> A = 2.3 + 23.3 + ..... + 22003.3

=> A = 3(2 + 23 + ..... + 22003) chia hết cho 3 (đpcm)

20 tháng 8 2017

\(A=2+2^2+2^3+...+2^{2003}+2^{2004}\)

\( A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+....+2^{2003}\cdot\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2003}\cdot3\)

\(A=\left(2+2^3+....+2^{2003}\right)\)

\(\Rightarrow A⋮3\)\(\left(đpcm\right)\)

26 tháng 8 2015

A= 12^2004 - 2^1000= (12^4)^501 - (2^4)^250= (...6)^501 - (...6)^250= ...6  - ...6 = ...0 chia het cho 10 (ĐPCM)

 

24 tháng 6 2016

2004 chia hết cho 3 và cho 4 nên ta có thể lập tổ hợp sau:

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

\(A=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{2002}\cdot\left(1+2+4\right)=7\cdot\left(2+2^4+...+2^{2002}\right)\)

=> A chia hết cho 7. (1)

Mặt khác: 

\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

\(A=2\cdot\left(15\right)+2^5\cdot\left(15\right)+...+2^{2001}\cdot\left(15\right)=15\cdot\left(2+2^5+...+2^{2001}\right)\)=> Achia hết cho 15 (2)

A chia hết cho 15 có nghĩa là A cũng chia hết cho 3 (3).

Từ (1) (2) (3) suy ra ĐPCM.

24 tháng 6 2016

sao bạn gửi câu hỏi muộn thế mình không giúp được @!!

24 tháng 6 2016

http://olm.vn/hoi-dap/question/614.html

20 tháng 11 2015

tick mình đi mình giải choBlog.Uhm.vN

20 tháng 11 2015

thu huyền tike nói nhưng có làm đâu

23 tháng 7 2019

a) Ta có: A = 1 + 3 + 32 + 33 + ... + 32015

A = (1 + 3 + 32 + 33 + 34) + ... + (32011 + 32012 + 32013 + 32014 + 32015)

A = 40 + ... + 32011(1 + 3 + 32 + 33 + 34)

A = 40 + ... + 32011.40

A = 40(1 + ... + 32011

A = 5.8(1 + ... + 32011\(⋮\)5

b) B = 2 + 22 + 23 + ... + 22016

B = (2 + 22 + 23 + 24) + ...+ (22013 + 22014 + 22015 + 22016)

B = 2(1 + 2 + 22 + 23) + ... + 22013(1 + 2 + 22 + 23)

B = 2.15 + ... + 22013. 15

B = (2 + ... + 22013) .15 \(⋮\)15

26 tháng 11 2015

Vô xem đáp án đi 

19 tháng 11 2017

42=2.3.7;2chia het cho 2;tu 2toi 22004   co so chia het cho 3 va 7 nen 2+22+23=...=22004

19 tháng 11 2017

Trình bày ra hộ cái