Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai nay minh la the nay cac ban doc neu cach lam dung thi tk giup neu sai thi nhan tin cho minh
Giai
Nhan ca hai ve voi 2 ta co :
\(2A=2.2^1.2^2.2^3.....................2^{59}.2^{60}\)
\(-\)
\(A=2.^12^2.2^3..................2^{59}.2^{60}\)
----------------------------------------------------------------------------------
\(2A=2\)
\(\Rightarrow A=1\)
Vi \(1⋮7\)
\(\Rightarrow A=2^1.2^2.2^3...................2^{59}.2^{60}⋮7\)
A = 21 + 22 + 23 + ..... + 259 + 260
A = ( 21 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 21 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22 )
A = 21 . 7 + ... + 258 . 7 \(⋮\)7
Vậy A \(⋮\) 7
Giải:
\(A=\text{( }2^1+2^2+2^3\text{)}+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2^1.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+2^{58}\right)⋮7\)
\(\Rightarrow A=2^1+2^2+2^3+2^4+....+2^{59}+2^{60}\) chia hết cho \(7\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(\Rightarrow A=2^1.7+2^4.7+...+2^{58}.7\)
\(\Rightarrow A=7\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow\)A chia hết cho 7 vì tích có chứ thừa số 7
Vậy A chia hết cho 7
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
A = ( 1 + 6 + 6^2 ) + ( 6^3 + 6^4 + 6^5 ) + ... + ( 6^57 + 6^58 + 6^59 )
= 1( 1 + 6 + 6^2 ) + 6^3( 1 + 6 + 6^2 ) + ... + 6^57( 1 + 6 + 6^2 )
= 1.43 + 6^3.43 + ... + 6^57.43
= 43( 1 + 6^3 + ... + 6^57 )
=> A chia hết cho 43
A = ( 1 + 6 ) + ( 6^2 + 6^3 ) + ... + ( 6^58 + 6^59 )
= 1( 1 + 6 ) + 6^2( 1 + 6 ) + ... + 6^58( 1 + 6 )
= 1.7 + 6^2.7 + ... + 6^58.7
= 7( 1 + 6^2 + ... + 6^58 )
=> A chia hết cho 7
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
Ta có:\(\dfrac{31}{2}\).\(\dfrac{32}{2}\).\(\dfrac{33}{2}\).....\(\dfrac{60}{2}\)
=\(\dfrac{31.32.33.....60}{2^{30}}\)
=\(\dfrac{\left(1.2.3.....30\right).\left(31.32.33.....60\right)}{\left(1.2.3.....30\right).2^{30}}\)
=\(\dfrac{1.2.3.....60}{2.4.6.....60}\)
=\(\dfrac{\left(1.3.5.....59\right).\left(2.4.6.....60\right)}{2.4.6.....60}\)
=1.3.5.....59
Vậy (đpcm)
\(A=2^1+2^2+2^3+...+2^{59}+2^{60}.\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right).\)
\(A=2^1\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right).\)
\(A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right).\)
\(A=2^1.7+2^4.7+...+2^{58}.7.\)
\(A=\left(2^1+2^4+...+2^{58}\right).7⋮7\left(đpcm\right).\)
Xem ở đây : https://olm.vn/hoi-dap/question/349607.html