K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$A=\frac{2^{10}+2-1}{2^9+1}=\frac{2(2^9+1)-1}{2^9+1}=2-\frac{1}{2^9+1}$

$B=\frac{2^{12}+1}{2^{11}+1}=\frac{2(2^{11}+1)-1}{2^{11}+1}=2-\frac{1}{2^{11}+1}$

Vì $2^9+1< 2^{11}+1\Rightarrow \frac{1}{2^9+1}> \frac{1}{2^{11}+1}$

$\Rightarrow 2-\frac{1}{2^9+1}< 2-\frac{1}{2^{11}+1}$

$\Rightarrow A< B$

17 tháng 4 2020

                        3667                                         2456                                            2145                                                                                                         *                                               -                                                    -                                                                                                                        9                                         1423                                             2133                                                                                                                                                                                                      

20 tháng 8 2020

a) Đặt A = \(\frac{5^{12}+1}{5^{13}+1}\Rightarrow5A=\frac{5^{13}+5}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

Đặt \(B=\frac{5^{11}+1}{5^{12}+1}\Rightarrow5B=\frac{5^{12}+5}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

Vì \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

20 tháng 8 2020

Áp dụng công thức : \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m\in N\right)\)

Ta có : \(A=\frac{5^{12}+1}{5^{13}+1}< 1\)

\(\Leftrightarrow A=\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}=\frac{5^{12}+5}{5^{13}+5}=\frac{5\left(5^{11}+1\right)}{5\left(5^{12}+1\right)}=B\)

\(\Leftrightarrow A< B\)

11 tháng 3 2016

=935 nhe bé

16 tháng 7 2016

Theo đầu bài ta có:
\(\hept{\begin{cases}A=\frac{10^{12}-1}{10^{13}-1}\Rightarrow10A=\frac{10^{13}-10}{10^{13}-1}=\frac{\left(10^{13}-1\right)-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\\B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\end{cases}}\)
Do \(1-\frac{9}{10^{13}-1}< 1< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)

Bài 1 :

\(3.\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}:3\)

\(\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Rightarrow3x-\frac{1}{2}=-\frac{1}{3}\)

\(\Rightarrow3x=\frac{-1}{3}+\frac{1}{2}\)

\(\Rightarrow3x=\frac{1}{6}\)

\(\Rightarrow x=\frac{1}{6}:3\)

\(\Rightarrow x=\frac{1}{18}\)

Bài 2 :

a,Ta có :

\(2^{27}=\left(2^3\right)^9=8^9\)

\(3^{18}=\left(3^2\right)^9=9^9\)

Vì 8 < 9 nên \(8^9< 9^9\)hay \(2^{27}< 3^{18}\).

b, Ta có :

\(5^{23}=5.5^{22}\)

\(6.5^{22}\)

Vì 5 < 6 nên \(5.5^{22}< 6.5^{22}\)hay \(5^{23}< 6.5^{22}\).

c, Ta có :

\(7.2^{13}\)

\(2^{16}=2^3.2^{13}=8.2^{13}\)

Vì 7 < 8 nên \(7.2^{13}< 8.2^{13}\)hay \(7.2^{13}< 2^{16}\).

Bài 3 : Hình như sai đề bài .

Bai 4 :

Ta có :

\(A=\left(1999+1999^2+1999^3+...+1999^{1998}\right)\)

\(\Rightarrow A=\left(1999+1999^2\right)+\left(1999^3+1999^4\right)+...+\left(1999^{1997}+1999^{1998}\right)\)

\(\Rightarrow A=1999\left(1+1999\right)+1999^3\left(1+1999\right)+...+1999^{1997}\left(1+1999\right)\)

\(\Rightarrow A=1999.2000+1999^3.2000+...+1999^{1997}.2000\)

\(\Rightarrow A=\left(1999+1999^3+...+1999^{1997}\right).2000⋮2000\)

Vậy A chia hết cho 2000 .

=> đpcm

Học tốt nhé

12 tháng 7 2019

1 Ta có: 201810  + 20189 = 20189.(2018 + 1) = 20189. 2019

          201710 = 20179.2017

=> 201810 + 20189 > 201710

2. A = 1 + 2 + 22 + 23 + ... + 2100

2A = 2(1 + 2 + 22 + 23 + ... + 2100)

2A = 2  + 22 + 23 + ... + 2101

2A - A = (2 + 22  + 23 + ... + 2101) - (1 + 2 + 22 +. ... + 2100)

A = 2101 - 1

B = 1 + 6 + 11 + 16 + ... + 51

B = (51 + 1)[(51 - 1) : 5 + 1] : 2

B = 52. 11 : 2

B = 286