Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không tính cụ thể các giá trị của A và B, hãy so sánh A và B.
A = 20213 và B = 2020 . 2021 . 2022
B = 2020.2021.2022
B = (2021 + 1).(2021 - 1).2021
B = (20212 - 2021 + 2021 - 1).2021
B = (20212 - 1).2021
B = 20213 - 2021 < 20213
Vậy A > B
B = 2020.2021.2022
B = (2021 - 1).(2021 + 1).2021
B = (2021.2021 + 2021 - 2021 - 1).2021
B = (20212021-1).2021
B = 20213 - 2021
Vậy A > B
a) \(A=2019.2021=\left(2020-1\right).\left(2020+1\right)=2020^2-1\)
\(B=2020.2020=2020^2\)
\(\Rightarrow2020^2-1< 2020^2\)\(\Rightarrow A< B\)
b) \(C=35.53-18=\left(34+1\right).53-18=34.53+53-18=34.53+34\)
mà \(D=35+53.34\)
\(\Rightarrow C=D\)
Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$
\(2.A=\frac{2^{2021}-2}{2^{2021}-1}=1-\frac{1}{2^{2021}-1}\)
\(2B=\frac{2^{2022}-2}{2^{2022}-1}=1-\frac{1}{2^{2022}-1}\)
dó \(\frac{1}{2^{2022}-1}< \frac{1}{2^{2021}-1}\Rightarrow1-\frac{1}{2^{2022}-1}>1-\frac{1}{2^{2021}-1}\Rightarrow A< B\)
HT
Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)