Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2014^{2015}+2015^{2014}+2013^{2013}=2014^{2.1007}.2014+2015^{2014}+2013^{4.503}.2013\)
\(=\left(...6\right).\left(...4\right)+\left(...5\right)+\left(...1\right).\left(...3\right)=\left(...4\right)+\left(...5\right)+\left(...3\right)=\left(...2\right)\)có tận cùng là 2 nên chia hết cho 2.
2014 đồng dư với 0(mod 2)
=>20142015 đồng dư với 0(mod 2)
20152014 đồng dư với 1(mod 2)
=>20152014 đồng dư với 1(mod 2)
2013 đồng dư với 1(mod 2)
=>20132013 đồng dư với 1(mod 2)
=>A chia hết cho 2
=>đpcm
ta có: \(A=\frac{2014^{2013}+1}{2014^{2013}-1}=\frac{2014^{2013}-1+2}{2014^{2013}-1}=1+\frac{2}{2014^{2013}-1}\)
\(B=\frac{2014^{2013}-1}{2014^{2013}-3}=\frac{2014^{2013}-3+2}{2014^{2013}-3}=1+\frac{2}{2014^{2013}-3}\)
\(\Rightarrow\frac{2}{2014^{2013}-1}< \frac{2}{2014^{2013}-3}\)
\(\Rightarrow1+\frac{2}{2014^{2013}-1}< 1+\frac{2}{2014^{2013}-3}\)
=> A < B
Ta có: \(2014S=2014\left(1+2014+2014^2+2014^3+...+2014^{2013}\right)\)
\(2014S=2014+2014^2+2014^3+2014^4+...+2014^{2014}\)
\(2014S-S=\left(2014+2014^2+2014^3+2014^4+...+2014^{2014}\right)-\left(1+2014+2014^2+2014^3+...+2014^{2013}\right)\)
\(2013S=2014^{2014}-1\)
\(S=\dfrac{2014^{2014}-1}{2013}\)
\(P-S=\dfrac{2014^{2014}}{2013}-\dfrac{2014^{2014}-1}{2013}=\dfrac{1}{2013}\)