Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,S=\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
\(\text{Ta có: }\frac{2007}{2008}< 1\)
\(\frac{2008}{2009}< 1\)
\(\frac{2009}{2010}< 1\)
\(\frac{2010}{2011}< 1\)
\(\Rightarrow\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}< 1+1+1+1\)
\(\Rightarrow\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}< 4\)
So sánh A và B, biết :
A= 2008 / 977654321 + 2009 / 246813579
B= 2009 / 987654321 + 2008 / 246813579
A < B = B > A
*Ryeo*
\(A=\frac{2008}{977654321}+\frac{2008}{246813579}+\frac{1}{246813579}\)
\(B=\frac{2009}{987654321}+\frac{2008}{246813579}\)
Thấy \(\frac{2008}{977654321}=2008\cdot\frac{1}{977654321}\)với \(\frac{1}{977654321}>\frac{1}{987654321}\)và\(2008>\frac{1}{987654321}\)nên \(\frac{2008}{977654321}>\frac{1}{987654321}\)
Ta cũng có \(\frac{1}{246813579}>\frac{1}{987654321}\)và \(\frac{2008}{246813579}=\frac{2008}{246813579}\)nên A > B.
Vậy A > B
Ta co
A=2007^2006( lên lơp 6 e se hoc)
=>A=2007^2 x 2007^2004
=>(...9)x(...1)=(...9) (1)
Ta co:
B=2006^2007=(...6)
a) Ta có:
\(1-\frac{2005}{2006}=\frac{1}{2006}\)
\(1-\frac{2006}{2007}=\frac{1}{2007}\)
Vì \(\frac{1}{2006}>\frac{1}{2007}\)nên \(\frac{2005}{2006}>\frac{2006}{2007}\)
b) Ta có:
\(\frac{2008}{2007}-1=\frac{1}{2007}\)
\(\frac{2007}{2006}-1=\frac{1}{2006}\)
Vì \(\frac{1}{2006}>\frac{1}{2007}\)nên \(\frac{2008}{2007}< \frac{2007}{2006}\)
a, \(\frac{2005}{2006}v\text{à}\frac{2006}{2007}\)= \(\frac{2005\cdot2007}{2006\cdot2007}\)và \(\frac{2006\cdot2006}{2007\cdot2006}\)
= \(\frac{4024035}{4026042}\)< \(\frac{4024036}{4026042}\)
b, \(\frac{2008}{2007}v\text{à}\frac{2007}{2006}\)= \(\frac{2008\cdot2006}{2007\cdot2006}v\text{à}\frac{2007\cdot2007}{2006\cdot2007}\)
=\(\frac{4028048}{4026042}\)< \(\frac{4028049}{4026042}\)
\(A=\frac{2006+2007}{2006.2007}=\frac{2006}{2006.2007}+\frac{2007}{2006.2007}=\frac{1}{2007}+\frac{1}{2006}\)
\(B=\frac{2007+2008}{2007.2008}=\frac{2007}{2007.2008}+\frac{2008}{2007.2008}=\frac{1}{2008}+\frac{1}{2007}\)
Vì \(\frac{1}{2007}+\frac{1}{2006}>\frac{1}{2008}+\frac{1}{2007}\)
=> \(A>B\)
2.006/2.007 + 2.007/2.008 < 2006 + 2.007/2.007 + 2.008
Chúc bạn học tốt.
😁😁😁
\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}\)
\(\Rightarrow\frac{2008}{2006}>1\)
\(\frac{2006}{2007}< 1;\frac{2007}{2008}< 1\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}< 2\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}< 3\)
A =2006/2007+2007/2008+2008/2006
= \(\frac{2006}{2007}\)+ \(\frac{2007+1}{2008}\)+ \(\frac{2008}{2006+2}\)
= 1 - \(\frac{1}{2007}\)+ 1 - \(\frac{1}{2008}\)+ 1 + \(\frac{1}{2006}\)+ \(\frac{1}{2006}\)
= 3 + ( \(\frac{1}{2006}\)- \(\frac{1}{2007}\)) + ( \(\frac{1}{2006}\)- \(\frac{1}{2008}\))
vì \(\frac{1}{2006}\)> \(\frac{1}{2007}\), \(\frac{1}{2006}\)> \(\frac{1}{2008}\)nên A > 3