Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
A=(2011x2011+1)/(2012x2011-2010)
=(2011x2011+1)/[(2011+1)x2011-2010]
=(2011x2011+1)/(2011x2011+1x2011-2010)
=(2011x2011+1)/(2011x2011+1)=1
A=1<2012/2011=B
nên A<B
\(\frac{2011}{2010}\times\frac{2012}{2011}\times\frac{2013}{2012}\times\frac{2014}{2013}\times\frac{1005}{1007}\)
\(=\frac{2014}{2010}\times\frac{1005}{1007}\)
\(=\frac{2\times1007\times1005}{2\times1005\times1007}\)
\(=1\)
\(\frac{20082008}{20122012}\times\frac{2012}{2010}\)
\(=\frac{2008.10001}{2012.10001}\times\frac{2012}{2010}\)
\(=\frac{2008}{2012}\times\frac{2012}{2010}\)
\(=\frac{2008\times2012}{2012\times2010}\)
\(=\frac{2008}{2010}=\frac{1004}{1005}\)
\(\frac{2001}{2003}\) và \(\frac{2012}{2014}\)
Ta có : \(1-\frac{2001}{2003}=\frac{2003}{2003}-\frac{2001}{2003}=\frac{2}{2003}\)
\(1-\frac{2012}{2014}=\frac{2014}{2014}-\frac{2012}{2014}=\frac{2}{2014}\)
Vì : \(\frac{2}{2003}>\frac{2}{2014}\)nên \(\frac{2001}{2003}< \frac{2012}{2014}\)
( Vì p/s nào có phần bù lớn hơn thì p/s đó nhỏ hơn )
\(\frac{1019}{1017}\)và \(\frac{1009}{1007}\)
Ta có : \(\frac{1019}{1017}-1=\frac{1019}{1017}-\frac{1017}{1017}=\frac{2}{1017}\)
\(\frac{1009}{1007}-1-\frac{1009}{1007}-\frac{1007}{1007}=\frac{2}{1007}\)
Vì : \(\frac{2}{1017}< \frac{2}{1007}\)nên \(\frac{1019}{1017}< \frac{1009}{1007}\)
4028011,999
A=\(\frac{2001x2012-1}{2010x2012+2001}\)