Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1
học tốt nhé bạn
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
`(2^x+1)^2 =25`
`=> (2^x+1)^2 = (+-5)^2`
\(\Rightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
\(\left(x+6\right)\left(5^x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\5^x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\5^x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
\(\left(x-3\right)^{2023}=x-3\)
\(\Rightarrow\left(x-3\right)^{2023}-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^{2022}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
a)64:2mũ5×30×4
= 64 : 32 x 30 x 4
= 240
b)3 mũ 2× 5 - 2 mũ 2×7+2 mũ 0 × 5
= 9 x 5 - 4 x 7 + 1 x 5
= 45 - 28 + 5
= 22
c)2 mũ 3-5 mũ 3÷5 mũ 2 + 12×2 mũ 2
= 8 - 125 : 25 + 12 x 4
= 8 - 5 + 48
= 51
d)2[(7-3 mũ 3÷3 mũ 2) chia 2 mũ 2 + 99]-100
= 2[( 7 - 27 : 9) : 4 + 99] - 100
= 2[4 : 4 + 99] - 100
= 2. 100 - 100
= 200 - 100
= 100
e)4[(3 + 3^7:3^4)chia 10 + 97]-300
= 4[( 3 + 3^3) : 10 + 97] - 300
= 4[ 30 : 10 + 97 ] - 300
= 4. 100 - 300
= 400 - 300
= 100
f)2^2 x 5 [(5 mũ 2 cộng 2 mũ 3) chia 11 - 2] - 3^2 x 2
= 4 x 5 [ (25 + 8 ) : 11 - 2] - 9 x 2
= 20 [ 33 : 11 - 2] - 18
= 20. 1 - 18
= 20 - 18
= 2
\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)
Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)
\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1
hay số dư của phép chia \(A\) cho \(3\) là \(1\).
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1