Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tôi nghĩ đề là như thế này :
Chứng minh :
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\ge\dfrac{9}{4a+4b+4c}\)
Làm :
Áp dụng BĐT Cachy dạng phân thức, ta có :
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\ge\dfrac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\dfrac{9}{4a+4b+4c}\)
Dấu "=" xảy ra khi a = b = c .
=> ĐPCM
\(a^2+2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
Mà \(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)
= (a+1)2 +(b+2)2 +(2c-1)2 =0
=> a = -1
b = -2
c = 1/2
đk cần và đủ giỏi toán IQ>100 + chăm
\(a^2+b^2+4c^2=2a-4b+4c-6\)
\(\Leftrightarrow a^2+2a+1+b^2+4b+4+4c^2-4c+1=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+4\left(c^2-2.c.\dfrac{1}{2}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+4\left(c-\dfrac{1}{2}\right)^2=0\)
Mà \(\left\{{}\begin{matrix}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\4\left(c-\dfrac{1}{2}\right)^2\ge0\end{matrix}\right.\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+4\left(c-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)^2=0\\\left(b+2\right)^2=0\\4\left(c-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(a=-1,b=-2,c=\dfrac{1}{2}\)
<=>a^2-2a+b^2+4b+4c^2-4c+1+4+1=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)2+(b+2)2+(2c-1)2=0
<=>(a-1)^2=0 hoặc(b+2)^2=0 hoặc (2c-1)^2=0
+,(a-1)^2=0<=>a-1=0<=>a=1
+,(b+2)^2=0<=>b+2=0<=>b=-2
+,(2c-1)^2=0<=>2c-1=0<=>2c=1<=>c=1/2
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)
\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)
Vì : \(\left(a-1\right)^2\ge0\) với mọi a
\(\left(b+2\right)^2\ge0\) với mọi b
\(\left(2c-1\right)^2\ge0\) với mọi c
=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c
Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)
Vậy........
Ngại viết đặt cho nhanh :>
\(a^2-2a+b^2+4b+4c^2-4c+6\)
\(=\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)
\(=\left(a-1\right)^2+\left(b+2\right)^2+\left(2c+1\right)^2\)(*)
Ta có : (*) \(\ge0\)
Dấu ''='' xảy ra <=> \(a=1;b=-2;c=-\frac{1}{2}\)(**)
Vậy GTNN biểu thức là 0 <=> ta có (**)
tìm giá trị nhỏ nhất giúp ạ