
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a,(x+2)(x+3)-(x+2)(x+5)=6
<=>(x+2)(x+3-x-5)=6
<=>(x+2).-2=6
<=>x+2=-3
<=>x=-3-2=-5
k rồi mình làm tiếp cho

a, 2x(x-1) - 3x(x+1)
= 2x2 - 2x - 3x2 - 3x
= -x2 - 5x
b, (x-1)(x+2) - (x-2)(x+1)
= x2 + 2x - x - 2 - x2 - x + 2x + 2
= 2x
c, (x-1)2 - (x+2)2
= x2 - 2x + 1 - x2 - 4x + 4
= -6x + 5
d, (2x-1)(2x-1) - 4(x+1)2
= 4x2 - 2x - 2x + 1 - 4(x2 + 2x + 1)
= 4x2 - 2x - 2x + 1 - 4x2 - 8x - 4
= -12x - 3
Chúc bạn học tốt!
a) 2x . (x-1) - 3x . (x+1)
= 2x2 - 2x - 3x2 - 3x
= - x2 - 5x
= - x (x +5)
b) (x - 1) . (x + 2) - (x - 2) . (x + 1)
= x2 + 2x - x - 2 - x2 + x - 2x - 2
= - 4
c) (x - 1)2 - (x + 2)2
= (x - 1 -x -2) (x + 1 + x + 2)
= - 3 (2x + 3)
d) (2x - 1) . (2x - 1) - 4 (x + 1)2
=

Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1

Câu 1 :
\(a,\left(3x+2\right)^2=9x^2+12x+4.\)
\(b,\left(6a^2-b\right)^2=36a^4-12a^2b-b^2\)
\(c,\left(4x-1\right)\left(4x+1\right)=16x^2-1\)
\(d,\left(1-x\right)\left(1+x\right)\left(1+x^2\right)=\left(1-x^2\right)\left(1+x^2\right)=1-x^4\)
\(e,\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4\)
\(f,\left(x^3+y^2\right)\left(x^3-y^2\right)=x^6-y^4\)
Bài 2 :
\(a,A=9x^2+42x+49=9+42+49=100.\)
\(b,B=25x^2-2xy+\frac{1}{25}y^2=\left(5x^2\right)-2.5x.\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)
\(=\left(5x-\frac{1}{5}y\right)^2=\left(-1+1\right)^2=0\)
\(c,C=4x^2-28x+49=4x^2-14x-14x+49\)
\(=2x\left(x-7\right)-7\left(x-7\right)=\left(2x-7\right)\left(x-7\right)\)
\(=\left(8-7\right)\left(4-7\right)=-3\)

\(4\left(x-1\right)-2\left(x-2\right)=3\)
\(\Leftrightarrow\) \(4x-4-2x+4=3\)
\(\Leftrightarrow\) \(2x=4\)
\(\frac{\frac{1}{x-1}}{\frac{x-2}{2.\left(x-1\right)}}=\frac{1}{x-1}:\frac{x-2}{2.\left(x-1\right)}=\frac{1}{x-1}.\frac{2.\left(x-1\right)}{x-2}=\frac{2}{x-2}\)