\(A=1+\frac{2x2}{3x3}+\frac{2x2}{5x5}+\frac{2x2}{7x7}+...+\frac{2x2}{2009x2009}\)= ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta thấy:

1/2*2<1/1*2)vì 2*2>1*2).

1/3*3<1/2*3(vì 3*3>2*3).

...

1/8*8<1/7*8(vì 8*8>7*8).

=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.

=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.

=>B<1-1/8.

=>B<7/8.

Mà 7/8<1.

=>B<1.

Vậy B<1(đpcm).

10 tháng 5 2017

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(\Rightarrow1-\frac{1}{8}< 1\)

=>B<1

7 tháng 7 2017

 \(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+....+\frac{1}{10\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

.....................................

\(\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}\)

\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}< 1\)

11 tháng 6 2018

Đặt \(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow B< 1-\frac{1}{10}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

27 tháng 1 2019

A=B vì( a=1/2013 ; b=1/2013)

9 tháng 8 2017

1+3+4+9=

9 tháng 8 2017

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2016}{2017}\)

\(=\frac{1.2.3......2016}{2.3.4.......2017}\)

\(=\frac{1}{2017}\)

19 tháng 6 2018

Ta có:

1/5×5 < 1/4×5

1/6×6 < 1/5×6

1/7×7 < 1/6×7

.........

1/100×100 < 1/99×100

=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 < 1/4×5 + 1/5×6 + 1/6×7 +.....+ 1/99×100

                                      = 1/4-1/5 + 1/5-1/6 + 1/6-1/7 +......+ 1/99-1/100

                                    = 1/4-1/100 < 1/4  

=> 1/5×5 + 1/6×6+1/7×7 +...+1/100×100<1/4  (1)

Lại có:

1/5×5 > 1/6×7

1/6×6 > 1/7×8

1/7×7 > 1/8×9

........

1/100×100 > 1/101×102

=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 > 1/5×6 + 1/6×7 + 1/7×8  +.....+1/100×101

                                   = 1/5-1/6 + 1/6-1/7 + 1/7-1/8 +.....+ 1/100 - 1/101

                                   = 1/5 - 1/101 > 1/5 - 1/30 = 1/6

=> 1/5×5 + 1/6×6 +1/7×7 +.....+ 1/100×100>1/6 (2)

Từ (1) và (2)

=> 1/6 < 1/5×5 +1/6×6+ 1/7×7 +...+1/100×100<1/4

19 tháng 6 2018

Đặt \(A=\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)

Có \(\frac{1}{5.5}< \frac{1}{4.5};\frac{1}{6.6}< \frac{1}{5.6};...;\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)(1)

Lại có :\(\frac{1}{5.5}>\frac{1}{5.6};\frac{1}{6.6}>\frac{1}{6.7};...;\frac{1}{100.100}>\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\left(2\right)\)

Từ (1) và (2) \(\RightarrowĐCCM\)

2: \(=\dfrac{59}{10}\cdot\dfrac{2}{3}-\left[\dfrac{7}{3}\cdot\left(4+\dfrac{1}{2}-2\right)\right]\cdot\dfrac{4}{7}\)

\(=\dfrac{59}{15}-\dfrac{4}{3}\cdot\dfrac{5}{2}=\dfrac{59}{15}-\dfrac{10}{3}=\dfrac{59-50}{15}=\dfrac{9}{15}=\dfrac{3}{5}\)

4: \(=254+254\cdot399+399\)

\(=254\cdot400+399\)

\(=101600+399=101999\)

5: \(=638+3900-41=3900+597=4497\)

DD
2 tháng 4 2022

Ta có: \(n.n!=\left(n+1\right).n!-1.n!=\left(n+1\right)!-n!\)

Suy ra \(A=1+1.1!+2.2!+...+10000.10000!\)

\(=1+2!-1!+3!-2!+...+10001!-10000!\)

\(=10001!\)