K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
7 tháng 11 2022

`a)15x^{3}-x=0`

`=>x(15x^{2}-1)=0`

`=>x=0` hoặc `15x^{2}-1=0`

`=>x=0` hoặc \(x^2=\dfrac{1}{15}\)

`=>x=0` hoặc \(x=\pm\dfrac{1}{\sqrt{15}}=\pm\dfrac{\sqrt{15}}{15}\)

`b)(3x-2).(x+3)+(x^{2}-9)=0`

`=>(3x-2).(x+3)+(x-3)(x+3)=0`

`=>(x+3)(3x-2+x-3)=0`

`=>x+3=0` hoặc `4x-5=0`

`=>x=-3` hoặc `x=5/4`

26 tháng 7 2020

dòng thứ tư câu a quên chưa chuyển vế 15-9 rồi kìa phải là 45x=6 mới đúng nha

26 tháng 7 2020

Dạ, em quên mất :<

9 tháng 2 2019

hướng dẫn cách làm-tự làm tiếp nha :)

a) đặt \(k=x^2-4x\), ta có:\(k^2-2k=15\)\(\Rightarrow k^2-2x+1=16\Rightarrow\left(k-1\right)^2=4^2=\left(-4\right)^2\)

b) đặt \(A=x^2-3x\), ta có: \(A^2-2A-8=0\Rightarrow A^2-2A+1=9\Rightarrow\left(A-1\right)^2=3^2=\left(-3\right)^2\)

c)theo đề \(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2-8x+9=0\end{cases}}\)

\(x^2-4x+3=0\Leftrightarrow x^2-4x+4=1\Leftrightarrow\left(x-2\right)^2=1^2=\left(-1\right)^2\)

\(x^2-8x+9=0\Leftrightarrow x^2-8x+16=7\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{7}^2\)

9 tháng 2 2019

vt ko chi tiết bn ib là đc rùi, sai tớ làm gì T.T 

mà tớ làm mẫu 1 bài thui nha, bài còn lại có cách làm òi. bn tự dựa vô nha

\(\text{Đặt }k=x^2-4x,\text{ta có:}\)

\(\left(x^2-4x\right)^2-2.\left(x^2-4x\right)=15\)

\(\Leftrightarrow k^2-2k=0\)

\(\Leftrightarrow k^2-2k+1=16\)

\(\Leftrightarrow\left(k-1\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}k-1=4\\k-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}k=5\\k=-3\end{cases}}}\)

\(\text{Với }k=5,\text{Ta có: }x^2-4x=5\Rightarrow x^2-4x-5=0\Rightarrow x^2-5x+x-5=0\)

\(\Rightarrow x.\left(x-5\right)+\left(x-5\right)=0\Rightarrow\left(x+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

\(\text{Với }k=-3,\text{ta có: }x^2-4x=-3\Rightarrow x^2-4x+3=0\Rightarrow k^2-3x-x+3=0\)

\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\Rightarrow\left(x-1\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy...

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

6 tháng 11 2018

b,2x.(x-5)-x.(3+2x)=26

2x2 - 10x - 3x - 2x2 = 26

-13x = 26

x = -2

c, (x+7)2-x.(x-3)=12

x2 +14x +49 - x2 + 3x = 12

17x + 49 = 12

17x = - 37

x = \(\dfrac{-37}{17}\)

d, 9( x -2018) - x+ 2018 =0

9( x -2018) - (x -2018) = 0

( 9-1)(x -2018) = 0

8( x -2018) = 0

x -2018 = 0

x = 2018

17 tháng 11 2022

a: =>2x+10-x^2-5=0

=>-x^2+2x+5=0

=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)

e: =>4x^2+4x+9x^2-4=15

=>13x^2+4x-19=0

=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)

1 tháng 4 2020

e, 3x(2-x) =15(x-2)

\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy..

f, (x+5)(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

Vậy..

g, x(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

,h, (2x -4)(x-2)=0

\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

i, (x+1/5)(2x-3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)

k, x²-4x=0

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

m, 4x²-1=0

\(\Leftrightarrow\left(2x\right)^2-1^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

n, x²-6x+9=0

\(\Leftrightarrow x^2-2.x.3+3^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)

<=> x=3

l, (3x-5)²-(x+4)²=0

\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)

\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy ..

o, 7x(x+2)-5(x+2)=0

\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)

Vậy....

p, 3x(2x-5)-4x+10=0

\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)

\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy...

q, (2-2x)-x²+1=0

\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)

\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy ....

r, x(1-3x)=5(1-3x)

\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)

s, 2x-3/4+x+1/6=3

\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)

1 tháng 4 2020

r, x(1-3x)=5(1-3x)

➜x(1-3x)-5(1-3x)=0

➜(x-5)(1-3x)=0

\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Mk lười lắm mai nha!!!~~~~~~~~~~~~

Bài 1:

a) Ta có: 7x+12=0

\(\Leftrightarrow7x=-12\)

hay \(x=-\frac{12}{7}\)

Vậy: \(x=-\frac{12}{7}\)

b) Ta có: 5x-2=0

\(\Leftrightarrow5x=2\)

hay \(x=\frac{2}{5}\)

Vậy: \(x=\frac{2}{5}\)

c) Ta có: 12-6x=0

\(\Leftrightarrow6x=12\)

hay x=2

Vậy: x=2

d) Ta có: -2x+14=0

⇔-2x=-14

hay x=7

Vậy: x=7

Bài 2:

a) Ta có: 3x+1=7x-11

⇔3x+1-7x+11=0

⇔-4x+12=0

⇔-4x=-12

hay x=3

Vậy: x=3

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=-12

hay x=-4

Vậy: x=-4

c) Ta có: x-5=3-x

⇔x-5-3+x=0

⇔2x-8=0

⇔2x=8

hay x=4

Vậy: x=4

d) Ta có: 7-3x=9-x

⇔7-3x-9+x=0

⇔-2x-2=0

⇔-2x=2

hay x=-1

Vậy: x=-1

e) Ta có: 5-3x=6x+7

⇔5-3x-6x-7=0

⇔-9x-2=0

⇔-9x=2

hay \(x=\frac{-2}{9}\)

Vậy: \(x=\frac{-2}{9}\)

f) Ta có: 11-2x=x-1

⇔11-2x-x+1=0

⇔12-3x=0

⇔3x=12

hay x=4

Vậy: x=4

g) Ta có: 15-8x=9-5

⇔15-8x=4

⇔8x=11

hay \(x=\frac{11}{8}\)

Vậy: \(x=\frac{11}{8}\)

Bài 3:

a) Ta có: 0,25x+1,5=0

⇔0,25x=-1,5

hay x=-6

Vậy: x=-6

b) Ta có: 6,36-5,2x=0

⇔5,2x=6,36

hay \(x=\frac{159}{130}\)

Vậy: \(x=\frac{159}{130}\)

17 tháng 8 2021

Trả lời:

a, \(\left(3x+1\right)\left(x-3\right)-x\left(3x-14\right)=15\)

\(\Leftrightarrow3x^2-9x+x-3-3x^2+14x=15\)

\(\Leftrightarrow6x-3=15\)

\(\Leftrightarrow6x=18\)

\(\Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt.

b, \(\left(x-3\right)^2=9-x^2\)

\(\Leftrightarrow\left(x-3\right)^2-9+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-3+x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right).2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

Vậy x = 3; x = 0 là nghiệm của pt.

c, \(\left(2x-\frac{1}{2}\right)^2-\left(1-2x\right)^2=2\)

\(\Leftrightarrow4x^2-2x+\frac{1}{4}-\left(1-4x+4x^2\right)=2\)

\(\Leftrightarrow4x^2-2x+\frac{1}{4}-1+4x-4x^2=2\)

\(\Leftrightarrow2x-\frac{3}{4}=2\)

\(\Leftrightarrow2x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{8}\)

Vậy x = 11/8 là nghiệm của pt.

d, \(4x^2+4x-3=0\)

\(\Leftrightarrow4x^2-2x+6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy x = 1/2; x = - 3/2 là nghiệm của pt.