Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử ạ.
a) ĐK: \(x\ge3;y\ge5;z\ge4\)
\(PT\Leftrightarrow\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}+\frac{4}{\sqrt{x-3}}+\frac{9}{\sqrt{y-5}}+\frac{25}{\sqrt{z-4}}=20\)
Ta có (theo BĐT AM-GM): \(\sqrt{x-3}+\frac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\frac{4}{\sqrt{x-3}}}=2.2=4\)
Tương tự:\(\sqrt{y-5}+\frac{9}{\sqrt{y-5}}\ge2.3=6\)
\(\sqrt{z-4}+\frac{25}{\sqrt{z-4}}\ge2.5=10\)
Cộng theo vế 3 BĐT trên được \(VT\ge20\)
Xảy ra đẳng thức khi \(\sqrt{x-3}=\frac{4}{\sqrt{x-3}}\Leftrightarrow x-3=4\Leftrightarrow x=7\)
Tương tự mấy cái kia ta cũng có \(y=14;z=29\)
Vậy..
Câu 3:
a: \(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
b: \(=\left(\sqrt{x}-\sqrt{y}\right)^2\)
c: \(=\sqrt{x}\left(\sqrt{y}+2\right)-3\left(\sqrt{y}+2\right)\)
\(=\left(\sqrt{y}+2\right)\left(\sqrt{x}-3\right)\)
a, \(A=\sqrt{8}-2\sqrt{15}-\sqrt{8}+2\sqrt{15}\)
\(=\left(\sqrt{8}-\sqrt{8}\right)+\left(-2\sqrt{15}+2\sqrt{15}\right)=0\)
b, \(B=\sqrt{49}+20\sqrt{6}+\sqrt{49}-20\sqrt{6}\)
\(=\left(\sqrt{49}+\sqrt{49}\right)+\left(20\sqrt{6}-20\sqrt{6}\right)=14\)
c, Không rõ đề
d, Không rõ đề
-Viết đề chán v!
Bài 1 : ĐK : \(x>3\) ; \(y>5\) ; \(z>4\)
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(\Leftrightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)
Theo BĐT Cô - Si cho hai số không âm ta có :
\(\left\{{}\begin{matrix}\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\dfrac{4\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{4}=4\\\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge2\sqrt{\dfrac{9\sqrt{y-5}}{\sqrt{y-5}}}=2\sqrt{9}=6\\\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge2\sqrt{\dfrac{25\sqrt{z-4}}{\sqrt{z-4}}}=2\sqrt{25}=10\end{matrix}\right.\)
\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)\ge20\)
\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=4\\y-5=9\\z-4=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=14\\z=29\end{matrix}\right.\left(TM\right)\)
Vậy \(x=7\) ; \(y=14\) ; \(z=29\)
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
tớ tích rồi đó bây giờ thì kết bạn thôi